A miniaturized neural network enabled nanoplasmonic spectroscopy platform for label-free cancer detection in biofluids
微型神经网络支持纳米等离子体光谱平台,用于生物流体中的无标记癌症检测
基本信息
- 批准号:10658204
- 负责人:
- 金额:$ 62.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsBenignBiological MarkersBiopsyBiosensorBlindedBloodCalibrationCancer ControlCancer DetectionClassificationClinicalComplexComputer softwareConsumptionDataDetectionDevicesDiabetes MellitusDiagnosisDiagnosticDiagnostic SensitivityDiseaseDrynessEarly DiagnosisEconomicsElectromagneticsElementsFingerprintFoundationsFourier TransformFourier transform infrared spectrometryFutureHead and Neck CancerHead and Neck SurgeryHead and neck structureHealth StatusHeart DiseasesHeterogeneityHistopathologyImageImmunohistochemistryIndividualInterferometryLabelLibrariesLightLiquid substanceMachine LearningMalignant NeoplasmsMass Spectrum AnalysisMeasurementMeasuresMetabolicMetabolic DiseasesMethodsModelingMonitorMonitoring for RecurrenceNeck CancerNeural Network SimulationOtolaryngologyOutcomeOutputPathologyPatientsPerformancePlasmaProcessRaman Spectrum AnalysisRapid diagnosticsRecurrenceRiskSalivaSamplingSignal TransductionSolidSpecificitySpectroscopy, Fourier Transform InfraredSpectrum AnalysisSpottingsStagingStatistical Data InterpretationSurvival RateSystemTechniquesTechnologyTestingTimeTranslatingUpdateWidthWorkabsorptionaccurate diagnosticscancer diagnosiscancer typecirculating biomarkersclinical diagnosiscohortdata streamsdeep neural networkdesigndetection limitdetectoreffective therapyhead and neck cancer patienthigh rewardhigh riskimaging modalityimprovedimproved outcomeinfrared spectroscopyinnovationinterdisciplinary approachlearning networkliquid biopsymachine learning algorithmmetabolomicsminiaturizemultidisciplinarymultiplex detectionnanonanopatternnanoplasmonicneural networkneural network architecturenovelpatient stratificationplasmonicspoint of careportabilityrapid testingroutine screeningsegregationsensorsmartphone applicationtoolvoltagewearable device
项目摘要
PROJECT SUMMARY/ABSTRACT
State of the art methods for the early detection and monitoring of cancer are either invasive, time-consuming,
expensive, or frequently inaccurate, which hinders the routine screening of at risk-patients to improve survival
rates. The multiplexed detection of oncometabolites circulating in minimally or non-invasive biofluids, such as
saliva, blood plasma, or sweat, could provide significant clinical and economic benefits. Metabolites and related
circulating biomarkers are structurally unique elements with distinctive absorptive fingerprints in the infrared (IR)
portion of the electromagnetic spectrum. Common approaches that provide multiplexed metabolite detection,
such as mass spectrometry (MS), Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy,
are expensive and difficult to miniaturize. On the other hand, inexpensive miniaturized electrochemical techniques
lack specificity, sensitivity, ease, and suffer from limited multiplexing. Portable technologies capable of rapid and
accurate diagnostics of early/late-stage cancer are not readily available.
To address this challenge, our multidisciplinary team proposes an innovative Neural Network Enabled Cancer
Spectroscopy (NNECS) liquid biopsy platform based on plasmonic nano-micro electromechanical systems
(NMEMS) to diagnose and monitor early/late-stage head neck cancer (HNC). Instead of targeting individual
metabolites, we propose to process the entire IR spectrum of saliva, blood plasma, and sweat as a biomarker.
Our focus is head and neck cancer (HNC), a highly metabolic disease where stratification of patients according
to better diagnostic information would greatly improve outcomes. Our platform combines IR NMEMS sensors to
accurately detect IR spectral fingerprints with neural network (NN) frameworks to find the appropriate
combinations of spectral bands that will inform the design of highly multiplexed miniaturized biosensor.
We will take a novel, interdisciplinary approach within the framework of five key components: (i) collecting and
analyzing (FTIR, MS, histopathology/imaging) biofluids (saliva, sweat, blood) from a large number of early/late
stage HNC patients and healthy subjects per year; (ii) developing powerful NN architectures and diagnosis tools
for segregating early/late-stage HNC samples from controls, considering IR data streams from each individual
biofluid as well as their potential combinations; (iii) developing a NNECS platform using arrays of plasmonic
NMEMS targeting specific IR bands resolved by ML algorithms; (iv) determining NNECS early/late-stage cancer
detection performance in terms of specificity, sensitivity, and accuracy; and (v) elucidating which metabolites
drive the changes in the IR absorption of cancer biofluids supported by MS. The expected outcome is a
miniaturized, label-free, affordable, and accurate technology able to radically improve the ability to diagnose early-
stage HNC as well as the monitoring of recurrent HNC patients. Moving beyond, NNECS can be adapted for the
diagnosis and monitoring of a wide range of metabolic conditions, including many types of cancer, diabetes, and
heart-diseases.
项目摘要/摘要
用于早期检测和监测癌症的现有技术方法是侵入性的、耗时的,
昂贵,或经常不准确,这阻碍了常规筛查的风险患者,以提高生存率
rates.对在微创或非侵入性生物流体中循环的癌细胞的多重检测,例如
唾液、血浆或汗液可以提供显著的临床和经济效益。金属及相关
循环生物标志物是结构独特的元素,在红外(IR)中具有独特的吸收指纹
电磁波谱的一部分。提供多重代谢物检测的常用方法,
例如质谱(MS)、拉曼光谱和傅里叶变换红外(FTIR)光谱,
价格昂贵且难以小型化。另一方面,廉价的小型化电化学技术
缺乏特异性、灵敏度、简便性,并且受到有限的多路复用的影响。便携式技术能够快速和
早期/晚期癌症的准确诊断并不容易获得。
为了应对这一挑战,我们的多学科团队提出了一种创新的神经网络癌症
基于等离子体纳微机电系统的NNECS液体活检平台
(NMEMS)来诊断和监测早期/晚期头颈癌(HNC)。而不是针对个人
为了检测唾液、血浆和汗液中的代谢物,我们建议将唾液、血浆和汗液的整个IR光谱作为生物标志物进行处理。
我们的重点是头颈癌(HNC),这是一种高度代谢性疾病,
更好的诊断信息将大大改善结果。我们的平台结合了IR NMEMS传感器,
准确地检测红外光谱指纹与神经网络(NN)框架,以找到适当的
这将为高度多路复用的小型化生物传感器的设计提供信息。
我们将在五个关键组成部分的框架内采取一种新颖的跨学科方法:(一)收集和
分析(FTIR,MS,组织病理学/成像)来自大量早期/晚期的生物流体(唾液,汗液,血液)
分期HNC患者和健康受试者每年;(ii)开发强大的NN架构和诊断工具
用于将早期/晚期HNC样品与对照分离,考虑来自每个个体的IR数据流
生物流体以及它们的潜在组合;(iii)使用等离子体激元阵列开发NNECS平台
NMEMS靶向通过ML算法解析的特定IR波段;(iv)确定NNECS早期/晚期癌症
在特异性、灵敏度和准确性方面的检测性能;以及(v)阐明哪些代谢物
驱动MS支持的癌症生物流体的IR吸收的变化。预期结果是
小型化、无标签、价格合理、准确的技术,能够从根本上提高早期诊断的能力,
阶段HNC以及复发HNC患者的监测。除此之外,NNECS还可适用于
诊断和监测广泛的代谢状况,包括许多类型的癌症,糖尿病,
心脏病
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Randy Carney其他文献
Randy Carney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Randy Carney', 18)}}的其他基金
Bottom-up, high-throughput prototyping of extracellular vesicle mimetics using cell-free synthetic biology
使用无细胞合成生物学对细胞外囊泡模拟物进行自下而上的高通量原型设计
- 批准号:
10638114 - 财政年份:2023
- 资助金额:
$ 62.9万 - 项目类别:
Homogenized, engineered extracellular vesicles for intracranial targeting
用于颅内靶向的均质化、工程化细胞外囊泡
- 批准号:
10659682 - 财政年份:2023
- 资助金额:
$ 62.9万 - 项目类别:
SERS diagnostics platform for liquid bioapsy analysis of tumor-associated exosomes
用于肿瘤相关外泌体液体活检分析的 SERS 诊断平台
- 批准号:
9973569 - 财政年份:2020
- 资助金额:
$ 62.9万 - 项目类别:
SERS diagnostics platform for liquid bioapsy analysis of tumor-associated exosomes
用于肿瘤相关外泌体液体活检分析的 SERS 诊断平台
- 批准号:
10377437 - 财政年份:2020
- 资助金额:
$ 62.9万 - 项目类别:
SERS diagnostics platform for liquid bioapsy analysis of tumor-associated exosomes
用于肿瘤相关外泌体液体活检分析的 SERS 诊断平台
- 批准号:
10593985 - 财政年份:2020
- 资助金额:
$ 62.9万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 62.9万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 62.9万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 62.9万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 62.9万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 62.9万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 62.9万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 62.9万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 62.9万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 62.9万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 62.9万 - 项目类别:
Continuing Grant