Collaborative Research: Multi-Scale, Multi-Rate Spatio-Temporal Optimal Control with Application to Airborne Wind Energy Systems
合作研究:多尺度、多速率时空最优控制及其在机载风能系统中的应用
基本信息
- 批准号:1709767
- 负责人:
- 金额:$ 23.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to pioneer new control strategies for emerging systems whose operating environments change as functions of both time and a controllable spatial position. Such applications include coordinated unmanned aerial vehicles that operate in variable atmospheric conditions, concepts for relocatable marine hydrokinetic energy systems that operate in a varying ocean environment, and airborne wind energy systems that operate in an atmospheric environment where the wind varies with respect to both time and vertical position. This research will focus on deriving general theory that will be relevant to a variety of applications, along with the validation of these results on an airborne wind energy system. In airborne wind energy systems, the conventional tower is replaced by tethers and a lifting body (a wing or aerostat) that elevates a horizontal-axis turbine to high altitudes. Because the tether lengths can be adjusted, the operating altitude can be varied to optimally harness the wind resource. The work will include a substantial complementary educational component, wherein graduate, undergraduate, and STEM high school students will utilize NREL's Hybrid Optimization Model for Multiple Energy Resources (HOMER) software to optimize renewable/storage/dispatchable network configurations for microgrids in North Carolina and California.This research will derive new control theoretic knowledge and tools for the systems that operate in a spatiotemporally varying and partially observable environment. While optimal control in a temporally varying environment is a well-studied problem that can be addressed through Markov models, the addition of a spatial component results in an explosion in the number of states, rendering Markov-based methods computationally infeasible in most cases. Furthermore, the presence of partial observability results in a fundamental tradeoff between exploration (obtaining knowledge of the spatial environment) and exploitation (operating at the most favorable locations). To address the complexities of this spatiotemporal optimization problem, this research will explore the use of a multi-rate, multi-scale hierarchical framework. Specifically, an upper-level controller will perform a global optimization over a very coarse grid (thereby rendering the optimization computationally tractable), and a lower-level optimization will perform adjustments on a much finer grid. The research will focus on model predictive control for the upper-level optimization and will explore the use of extremum seeking and model predictive control strategies at the lower level. Control algorithms will be validated on a model of a lighter-than-air airborne wind energy system, using real wind shear profile models and load demand data. In this airborne wind energy system, the wind speed is only measurable at the system?s operating altitude (thereby making the problem partially observable), and significant energy production improvements can be realized through the optimal adjustment of the operating altitude.uction improvements can be realized through the optimal adjustment of the operating altitude.
本研究的目的是开拓新的控制策略,新兴的系统,其操作环境的变化作为时间和可控的空间位置的函数。这种应用包括在可变大气条件下操作的协调的无人驾驶飞行器、在变化的海洋环境中操作的可重新定位的海洋流体动力能系统的概念、以及在风相对于时间和垂直位置两者变化的大气环境中操作的空中风能系统。这项研究将集中在推导出一般的理论,将相关的各种应用,沿着这些结果的空中风能系统的验证。在空中风能系统中,传统的塔架被系绳和提升体(翼或浮空器)所取代,该提升体将水平轴涡轮机提升到高海拔。由于系绳长度可以调节,因此可以改变操作高度以最佳地利用风力资源。这项工作将包括一个实质性的补充教育组成部分,其中研究生,本科,STEM高中学生将利用NREL的多能源混合优化模型(HOMER)软件来优化可再生能源/储能/在北卡罗来纳州和加州的微电网可调度的网络配置。这项研究将获得新的控制理论知识和工具,系统运行在时空变化,部分可观察的环境。虽然时变环境中的最优控制是一个可以通过马尔可夫模型解决的研究充分的问题,但添加空间分量会导致状态数量的爆炸,使得基于马尔可夫的方法在大多数情况下在计算上不可行。此外,部分可观测性的存在导致探索(获得空间环境的知识)和开发(在最有利的位置操作)之间的基本权衡。为了解决这个时空优化问题的复杂性,本研究将探索使用多速率,多尺度的分层框架。具体而言,上层控制器将在非常粗糙的网格上执行全局优化(从而使优化在计算上易于处理),并且下层优化将在更精细的网格上执行调整。研究将集中在上层优化的模型预测控制,并将探索极值搜索和模型预测控制策略的使用在较低的水平。将使用真实的风切变廓线模型和负载需求数据,在轻于空气的机载风能系统模型上验证控制算法。在这种空中风能系统中,风速只能在系统中测量?的操作高度(从而使问题部分可观察),并且通过操作高度的最优调节可以实现显著的能量生产改进。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Empirical Regret Bounds for Control in Spatiotemporally Varying Environments: A Case Study in Airborne Wind Energy
时空变化环境中控制的经验遗憾界限:空中风能案例研究
- DOI:10.1115/dscc2019-9068
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Haydon, Ben;Cole, Jack;Dunn, Laurel;Keyantuo, Patrick;Chow, Tina;Moura, Scott;Vermillion, Chris
- 通讯作者:Vermillion, Chris
On Wind Speed Sensor Configurations and Altitude Control in Airborne Wind Energy Systems
机载风能系统中的风速传感器配置和高度控制
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Dunn, Laurel N.;Vermillion, Christopher;Chow, Fotini K.;Moura, Scott J.
- 通讯作者:Moura, Scott J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Moura其他文献
Scott-Moura/Spmet: The Full Spmet
Scott-Moura/Spmet:完整的 Spmet
- DOI:
10.5281/zenodo.221376 - 发表时间:
2016 - 期刊:
- 影响因子:11.2
- 作者:
Scott Moura - 通讯作者:
Scott Moura
Investigating the “whole-life performance” of representative profile extraction for microgrid planning
研究微电网规划代表性剖面提取的“全生命周期性能”
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Linfeng Xie;Yi Ju;Zhe Wang;Zhihan Su;Scott Moura;Borong Lin - 通讯作者:
Borong Lin
Health-aware energy management for multiple stack hydrogen fuel cell and battery hybrid systems
用于多堆氢燃料电池和电池混合动力系统的健康感知能源管理
- DOI:
10.1016/j.apenergy.2025.126257 - 发表时间:
2025-11-01 - 期刊:
- 影响因子:11.000
- 作者:
Junzhe Shi;Ulf Jakob Flø Aarsnes;Shengyu Tao;Ruiting Wang;Dagfinn Nærheim;Scott Moura - 通讯作者:
Scott Moura
) Υ ( Bt ) Υ ( Bt ) Υ ( Bt − 1 ) Υ (
) Y ( Bt ) Y ( Bt ) Y ( Bt − 1 ) Y (
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
E. Munsing;J. Mather;Scott Moura - 通讯作者:
Scott Moura
HumanLight: Incentivizing ridesharing via human-centric deep reinforcement learning in traffic signal control
人类之光:通过以人类为中心的深度强化学习在交通信号控制中激励拼车
- DOI:
10.1016/j.trc.2024.104593 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:7.900
- 作者:
Dimitris M. Vlachogiannis;Hua Wei;Scott Moura;Jane Macfarlane - 通讯作者:
Jane Macfarlane
Scott Moura的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Moura', 18)}}的其他基金
CAREER: Estimation and Control of Electrochemical-Thermal Battery Models: Theory and Experiments
职业:电化学热电池模型的估计和控制:理论和实验
- 批准号:
1847177 - 财政年份:2019
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
Fast Charging Batteries via Electrochemical Model-based Control
通过基于电化学模型的控制对电池进行快速充电
- 批准号:
1408107 - 财政年份:2014
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347423 - 财政年份:2024
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
- 批准号:
2348956 - 财政年份:2024
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
- 批准号:
2349872 - 财政年份:2024
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
- 批准号:
2309310 - 财政年份:2024
- 资助金额:
$ 23.5万 - 项目类别:
Continuing Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
- 批准号:
2309308 - 财政年份:2024
- 资助金额:
$ 23.5万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
- 批准号:
2348955 - 财政年份:2024
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
- 批准号:
2309309 - 财政年份:2024
- 资助金额:
$ 23.5万 - 项目类别:
Continuing Grant