CAREER: Estimation and Control of Electrochemical-Thermal Battery Models: Theory and Experiments
职业:电化学热电池模型的估计和控制:理论和实验
基本信息
- 批准号:1847177
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development Program (CAREER) project will benefit national interests by advancing knowledge on battery management systems based on electrochemical-thermal models. Batteries are the linchpin technology for multiple economic sectors, including consumer electronics, transportation, and electric power systems. However, today's battery management systems use simplistic models, which have raised serious performance and safety issues. For example, significant electrification of the U.S. vehicle fleet will require fast charging and long-range batteries. Simultaneously, we must ensure safety, as evidenced by recent cases where batteries have caught fire. Future battery management systems will address these deficiencies and unlock increased performance and safety by utilizing high-fidelity multi-physics models. However, the electrochemical-thermal model dynamics present unsolved challenges for estimation and control. The research goal of this project is to resolve these challenges and generate results that will enable current and future batteries with more energy, more power, faster charge times, and longer life. The educational goal of this project is to enhance retention and performance among students from underrepresented, low-income, and first-generation backgrounds. This will be achieved through a "Maker Design Studio," which will train over 600 Science, Technology, Engineering, and Mathematics (STEM) students to become the next generation of energy and control engineering leaders.Batteries are characterized by multi-physics mathematical models, often involving nonlinear Partial Differential Equations (PDEs), limited sensing and actuation, and significant parameter uncertainty. This project pursues three research goals, motivated by batteries yet in pursuit of fundamental systems and control challenges: (1) Formulate and analyze a parameter estimation framework, based on a data selection approach that resolves the identifiability problem. Online battery parameter (i.e. state-of-health) estimation has remained elusive, due to fundamental identifiability challenges. (2) Experimentally quantify the benefits of an electrochemical model-based battery management system in terms of fast charge times and capacity loss. Today, it is unclear if rigorously designed electrochemical model-based management systems yield significant improvements, due to the lack of experimental evidence. This project leverages a unique battery-in-the-loop testbed to reveal the true impact of electrochemical-based management methods. (3) Create a PDE-based analysis, estimation, and control framework for coupled parabolic-hyperbolic PDEs, with application to battery thermal management. Specifically, the project pursues a weak-variations approach to design linear quadratic estimators and controllers. Overall, this project focuses on fundamental advancements to estimation and control that will accelerate a paradigm shift toward multi-physics control-theoretic battery management systems that will enable a new generation of energy storage.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该教师早期职业发展计划(CAREER)项目将通过推进基于电化学-热模型的电池管理系统知识,使国家利益受益。电池是多个经济部门的关键技术,包括消费电子产品,运输和电力系统。然而,今天的电池管理系统使用简单的模型,这已经引起了严重的性能和安全问题。例如,美国车队的电气化将需要快速充电和长距离电池。与此同时,我们必须确保安全,最近发生的电池起火事件就是证明。未来的电池管理系统将解决这些缺陷,并通过利用高保真多物理模型来提高性能和安全性。然而,电化学-热模型动力学的估计和控制提出了未解决的挑战。该项目的研究目标是解决这些挑战,并产生结果,使当前和未来的电池具有更多的能量,更多的功率,更快的充电时间和更长的寿命。该项目的教育目标是提高来自代表性不足,低收入和第一代背景的学生的保留率和表现。这将通过“创客设计工作室”实现,该工作室将培养600多名科学、技术、工程和数学(STEM)学生,使其成为下一代能源和控制工程的领导者。电池的特点是多物理数学模型,通常涉及非线性偏微分方程(PDE)、有限的传感和驱动以及显著的参数不确定性。该项目追求三个研究目标,由电池驱动,但在追求基本系统和控制的挑战:(1)制定和分析参数估计框架,基于解决可识别性问题的数据选择方法。由于基本的可识别性挑战,在线电池参数(即健康状态)估计仍然难以捉摸。(2)通过实验量化基于电化学模型的电池管理系统在快速充电时间和容量损失方面的优势。今天,由于缺乏实验证据,尚不清楚严格设计的基于电化学模型的管理系统是否会产生显着的改善。该项目利用独特的电池在环测试平台来揭示基于电化学的管理方法的真正影响。(3)为耦合抛物-双曲偏微分方程创建基于偏微分方程的分析、估计和控制框架,并将其应用于电池热管理。具体而言,该项目追求弱变化的方法来设计线性二次估计器和控制器。总体而言,该项目侧重于评估和控制方面的根本性进展,这将加速向多物理场控制理论电池管理系统的范式转变,从而实现新一代储能。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global Sensitivity Analysis of 0-D Lithium Sulfur Electrochemical Model
0-D锂硫电化学模型的全局灵敏度分析
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Dangwal, C;Kato, D.;Huang, Z.;Kandel, A.;Moura, S. J.
- 通讯作者:Moura, S. J.
Estimation of Parameter Probability Distributions for Lithium-Ion Battery String Models Using Bayesian Methods
- DOI:10.1115/dscc2020-3218
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Luis D. Couto;Dong Zhang;A. Aitio;S. Moura;D. Howey
- 通讯作者:Luis D. Couto;Dong Zhang;A. Aitio;S. Moura;D. Howey
State Estimation for a Zero-Dimensional Electrochemical Model of Lithium-Sulfur Batteries
- DOI:10.23919/acc50511.2021.9483225
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Zhijia Huang;Dong Zhang;Luis D. Couto;Quan-hong Yang;S. Moura
- 通讯作者:Zhijia Huang;Dong Zhang;Luis D. Couto;Quan-hong Yang;S. Moura
Reinforcement Learning-based Fast Charging Control Strategy for Li-ion Batteries
- DOI:10.1109/ccta41146.2020.9206314
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Saehong Park;Andrea Pozzi;Michael Whitmeyer;Won Tae Joe;D. Raimondo;S. Moura
- 通讯作者:Saehong Park;Andrea Pozzi;Michael Whitmeyer;Won Tae Joe;D. Raimondo;S. Moura
Integrating Electrochemical Modeling with Machine Learning for Lithium-Ion Batteries
- DOI:10.23919/acc50511.2021.9482997
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:H. Tu;S. Moura;H. Fang
- 通讯作者:H. Tu;S. Moura;H. Fang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Moura其他文献
Scott-Moura/Spmet: The Full Spmet
Scott-Moura/Spmet:完整的 Spmet
- DOI:
10.5281/zenodo.221376 - 发表时间:
2016 - 期刊:
- 影响因子:11.2
- 作者:
Scott Moura - 通讯作者:
Scott Moura
Investigating the “whole-life performance” of representative profile extraction for microgrid planning
研究微电网规划代表性剖面提取的“全生命周期性能”
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Linfeng Xie;Yi Ju;Zhe Wang;Zhihan Su;Scott Moura;Borong Lin - 通讯作者:
Borong Lin
Health-aware energy management for multiple stack hydrogen fuel cell and battery hybrid systems
用于多堆氢燃料电池和电池混合动力系统的健康感知能源管理
- DOI:
10.1016/j.apenergy.2025.126257 - 发表时间:
2025-11-01 - 期刊:
- 影响因子:11.000
- 作者:
Junzhe Shi;Ulf Jakob Flø Aarsnes;Shengyu Tao;Ruiting Wang;Dagfinn Nærheim;Scott Moura - 通讯作者:
Scott Moura
) Υ ( Bt ) Υ ( Bt ) Υ ( Bt − 1 ) Υ (
) Y ( Bt ) Y ( Bt ) Y ( Bt − 1 ) Y (
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
E. Munsing;J. Mather;Scott Moura - 通讯作者:
Scott Moura
HumanLight: Incentivizing ridesharing via human-centric deep reinforcement learning in traffic signal control
人类之光:通过以人类为中心的深度强化学习在交通信号控制中激励拼车
- DOI:
10.1016/j.trc.2024.104593 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:7.900
- 作者:
Dimitris M. Vlachogiannis;Hua Wei;Scott Moura;Jane Macfarlane - 通讯作者:
Jane Macfarlane
Scott Moura的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Moura', 18)}}的其他基金
Collaborative Research: Multi-Scale, Multi-Rate Spatio-Temporal Optimal Control with Application to Airborne Wind Energy Systems
合作研究:多尺度、多速率时空最优控制及其在机载风能系统中的应用
- 批准号:
1709767 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Fast Charging Batteries via Electrochemical Model-based Control
通过基于电化学模型的控制对电池进行快速充电
- 批准号:
1408107 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
- 批准号:
2340089 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Robust Data Based Control and Estimation for Resilient DC Microgrids
职业:基于稳健数据的弹性直流微电网控制和估计
- 批准号:
2339434 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Learning, Estimation, and Control of Networked Epidemic Processes
职业:网络化流行病过程的学习、估计和控制
- 批准号:
2238388 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
NSF-BSF: Real-Time Robust Estimation and Stochastic Control for Dynamic Systems with Additive Heavy-Tailed Uncertainties
NSF-BSF:具有加性重尾不确定性的动态系统的实时鲁棒估计和随机控制
- 批准号:
2317583 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Flow sensing, estimation and control in turbulent flows
湍流中的流量传感、估计和控制
- 批准号:
RGPIN-2018-04147 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Learning-Aided Distributed Estimation and Control for Networked Vehicular Systems
网络车辆系统的学习辅助分布式估计和控制
- 批准号:
RGPIN-2020-05097 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Estimation of Human Locomotion Using Artificial Intelligence and Application to Control of Biped Robot
利用人工智能估计人体运动及其在双足机器人控制中的应用
- 批准号:
22K04012 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Intelligent Multi-Agent Systems: Cooperative Control, Estimation and Optimization
智能多智能体系统:协作控制、估计和优化
- 批准号:
568048-2022 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Postdoctoral Fellowships
Distributed Control and Estimation of Sustainable Chemical Process Systems
可持续化学过程系统的分布式控制和估计
- 批准号:
RGPIN-2017-04198 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Unified Vision-Based Motion Estimation and Control for Multiple and Complex Robots
多个复杂机器人的基于视觉的统一运动估计和控制
- 批准号:
2212051 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant














{{item.name}}会员




