CDS&E - ECCS: Plane-wave Electronic TRAnsport (PETRA)
CDS
基本信息
- 批准号:1710066
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A great variety of consumer electronics, such as laptops and smartphones, rely on tiny nanometer-size electronic switches. To further improve and develop new electronic switches that can be manufactured more cheaply and consume less power, new device concepts based on novel two-dimensional materials rather than conventional silicon technologies have been proposed and new research is needed to assess their potential properties. An important step in the development of such new electronic switches is computer simulations incorporating the physical elements that control the charge transport. Many important breakthroughs have been realized in electronic transport simulations and quantum transport is routinely simulated using a host of tools available to the community. However, all of these currently available tools start from the chemist's "tight-binding" viewpoint rather than from the physicist's "plane-wave" vantage point. Unfortunately, certain physical processes that are important in two-dimensional materials are difficult to be treated correctly using the tight-binding basis. The goal of this project is to transform the way quantum transport is studied by moving from the tight-binding basis to the plane-wave basis. This project will develop a plane-wave based quantum transport code capable of studying novel electronic devices. The project will also include a study of conventionally-scaled electronic devices as well as newly proposed devices and materials that present important routes toward the realization of a more energy-efficient electronics. This project will also generate a pipeline of students motivated to study science and engineering at universities through participation in various outreach programs at the University of Texas at Dallas. Specifically, the project will develop a plane-wave based code capable of studying quantum transport in nanoscale devices such as nanowires and nanoribbons. Efficient plane-wave algorithms to reduce computational memory and time requirements and a robust capability of studying the effects of spin-orbit coupling will be implemented in the code. Electronic dissipative scattering in these nanoscale devices will be dealt with using the Pauli Master equation. Important physical phenomena that will be incorporated are: scattering with phonons, defects, and edge roughness. Of particular interest is scattering with the flexural out-of-plane phonons which are hard to describe in a localized basis set. The atomic-scale dielectric response in these low-dimensional systems will also be studied. Using the developed quantum transport code, a wide variety of devices, such as conventional field-effect transistors, tunneling-based field-effect transistors, and topological-insulator field-effect transistors, will be studied. The research will elucidate the impact of flexural out-of-plane phonon modes on the electronic-transport characteristics of low-dimensional materials. The effects of spin-orbit coupling on transport will be determined. How the interplay between spin-orbit coupling and the electron-phonon interaction affects transport will be clarified. Finally, the research will also unravel the important physical processes in future field-effect transistors and determine how to deal with possible detrimental effects such as line-edge roughness.
各种各样的消费电子产品,如笔记本电脑和智能手机,都依赖于微小的纳米尺寸的电子开关。为了进一步改进和开发可以更便宜地制造并且消耗更少功率的新电子开关,已经提出了基于新型二维材料而不是传统硅技术的新器件概念,并且需要新的研究来评估其潜在特性。开发这种新型电子开关的一个重要步骤是计算机模拟,其中包括控制电荷传输的物理元件。在电子输运模拟中已经实现了许多重要的突破,并且使用社区可用的大量工具来常规地模拟量子输运。然而,所有这些目前可用的工具都是从化学家的“紧束缚”观点出发,而不是从物理学家的“平面波”Vantage观点出发。不幸的是,在二维材料中某些重要的物理过程很难用紧束缚基来正确处理。该项目的目标是通过从紧束缚基转移到平面波基来改变量子输运的研究方式。该项目将开发一种基于平面波的量子传输代码,能够研究新型电子设备。该项目还将包括对传统规模的电子设备以及新提出的设备和材料的研究,这些设备和材料为实现更节能的电子产品提供了重要途径。该项目还将产生一批学生,他们通过参加德克萨斯大学达拉斯分校的各种推广方案,有动力在大学学习科学和工程。具体来说,该项目将开发一种基于平面波的代码,能够研究纳米器件(如纳米线和纳米带)中的量子传输。有效的平面波算法,以减少计算内存和时间的要求和强大的能力,研究自旋轨道耦合的影响将在代码中实现。电子耗散散射在这些纳米器件将处理使用泡利主方程。重要的物理现象,将被纳入:散射声子,缺陷和边缘粗糙度。特别令人感兴趣的是散射与弯曲的面外声子,这是很难描述的本地化基组。在这些低维系统的原子尺度的介电响应也将进行研究。使用开发的量子传输代码,各种各样的设备,如传统的场效应晶体管,隧道场效应晶体管,和拓扑绝缘体场效应晶体管,将被研究。研究将阐明弯曲离面声子模对低维材料电子输运特性的影响。将确定自旋轨道耦合对运输的影响。自旋-轨道耦合和电子-声子相互作用之间的相互作用如何影响运输将得到澄清。最后,这项研究还将揭示未来场效应晶体管的重要物理过程,并确定如何处理可能的有害影响,如线边缘粗糙度。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generation of empirical pseudopotentials for transport applications and their application to group IV materials
用于传输应用的经验赝势的生成及其在 IV 族材料中的应用
- DOI:10.1063/5.0009838
- 发表时间:2020
- 期刊:
- 影响因子:3.2
- 作者:Laturia, Akash A.;Van de Put, Maarten L.;Vandenberghe, William G.
- 通讯作者:Vandenberghe, William G.
Efficient Modeling of Electron Transport with Plane Waves
平面波电子传输的高效建模
- DOI:10.1109/sispad.2018.8551730
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Van de Put, Maarten L.;Laturia, Akash A.;Fischetti, Massimo V.;Vandenberghe, William G.
- 通讯作者:Vandenberghe, William G.
Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk
- DOI:10.1038/s41699-018-0050-x
- 发表时间:2018-03-08
- 期刊:
- 影响因子:9.7
- 作者:Laturia, Akash;Van de Put, Maarten L.;Vandenberghe, William G.
- 通讯作者:Vandenberghe, William G.
Carrier transport in two-dimensional topological insulator nanoribbons in the presence of vacancy defects
- DOI:10.1088/2053-1583/ab0058
- 发表时间:2019-04-01
- 期刊:
- 影响因子:5.5
- 作者:Tiwari, Sabyasachi;Van de Put, Maarten L.;Vandenberghe, William G.
- 通讯作者:Vandenberghe, William G.
Determining Electronic, Structural, Dielectric, Magnetic, and Transport Properties in Novel Electronic Materials: Using first-principles techniques
确定新型电子材料的电子、结构、介电、磁性和传输特性:使用第一原理技术
- DOI:10.1109/mnano.2021.3113223
- 发表时间:2021
- 期刊:
- 影响因子:1.6
- 作者:Vandenberghe, William G.
- 通讯作者:Vandenberghe, William G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Vandenberghe其他文献
Special issue on two-dimensional materials
- DOI:
10.1007/s10825-021-01665-z - 发表时间:
2021-02-08 - 期刊:
- 影响因子:2.500
- 作者:
William Vandenberghe;Vihar Georgiev - 通讯作者:
Vihar Georgiev
Re-examining the role of subsurface oxygen vacancies in the dissociation of Hsub2/subO molecules on anatase TiOsub2/sub
- DOI:
10.1016/j.apsusc.2022.153452 - 发表时间:
2022-08-30 - 期刊:
- 影响因子:6.900
- 作者:
Kolade Augustine Oyekan;Maarten Van de Put;Sabyasachi Tiwari;Carole Rossi;Alain Esteve;William Vandenberghe - 通讯作者:
William Vandenberghe
William Vandenberghe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
自愈合ECCs力学性能恢复(HIRMP)机制研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
相似海外基金
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
- 批准号:
EP/X025381/1 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant
ECCS-EPSRC: A new generation of cost-effective, scalable and stable radiation detectors with ultrahigh detectivity
ECCS-EPSRC:具有超高探测率的新一代经济高效、可扩展且稳定的辐射探测器
- 批准号:
EP/Y032942/1 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
- 批准号:
2332172 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
- 批准号:
2332173 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
ECCS-EPSRC: A new generation of cost-effective, scalable and stable radiation detectors with ultrahigh detectivity
ECCS-EPSRC:具有超高探测率的新一代经济高效、可扩展且稳定的辐射探测器
- 批准号:
2313755 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: ECCS: Small: Personalized RF Sensing: Learning Optimal Representations of Human Activities and Ethogram on the Fly
合作研究:ECCS:小型:个性化射频传感:学习人类活动的最佳表示和动态行为图
- 批准号:
2233503 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
ECCS-EPSRC - Advanced III-N Devices and Circuit Architectures for mm-Wave Future-Generation Wireless Communications
ECCS-EPSRC - 用于毫米波下一代无线通信的先进 III-N 器件和电路架构
- 批准号:
EP/X012123/1 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant
ECCS-EPSRC. Acoustically Induced Ferromagnetic Resonance (FMR) Assisted Energy Efficient Spin Torque Memory Devices
ECCS-EPSRC。
- 批准号:
EP/X036715/1 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant
ECCS-EPSRC - Advanced III-N Devices and Circuit Architectures for mm-Wave Future-Generation Wireless Communications'
ECCS-EPSRC - 用于毫米波未来一代无线通信的先进 III-N 器件和电路架构
- 批准号:
EP/X01214X/1 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant
CDS&E: ECCS: Accurate and Efficient Uncertainty Quantification and Reliability Assessment for Computational Electromagnetics and Engineering
CDS
- 批准号:
2305106 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant














{{item.name}}会员




