Geometric Analysis and Optimal Control of Quantum Systems in the KP Configuration; Generalizations to nonlinear Systems with Symmetries

KP 配置中量子系统的几何分析和优化控制;

基本信息

  • 批准号:
    1710558
  • 负责人:
  • 金额:
    $ 29.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2022-10-31
  • 项目状态:
    已结题

项目摘要

The precise and efficient control of the state of quantum mechanical systems, such as atoms, nuclei and electrons, is a requirement in most applications of these systems. Such a control is typically obtained through the interaction with external, appropriately shaped, electromagnetic fields. Moreover, one often wants not only to drive the state to a desired value but also to optimize the available resources. The minimization of time is especially important. In applications to computation, fast dynamics result in the speed-up of the implemented algorithms. Furthermore, in general, the evolution has to occur within the time frame during which the mathematical model can be considered valid, before the effect of un-modeled dynamics becomes relevant. In this context, this research will accomplish three inter-related objectives: 1) It will provide explicit optimal control design algorithms for a large class of quantum mechanical systems very common in important applications. 2) It will provide an in depth mathematical analysis of the role of symmetries in quantum control systems and how these symmetries can be used to simplify mathematical models of quantum systems, thus considerably extending the existing theory. 3) It will validate the mathematical results through experiments in quantum optics and nuclear magnetic resonance via the collaboration with experimental laboratories. The overall result will be a rich toolbox for the optimal manipulation of quantum mechanical systems to be used in applications in secure communication, powerful quantum computing, design of measurement devices, medical diagnostics and, in general, every device which uses quantum systems. The activities will involve an interdisciplinary research team composed of engineers, physicists and mathematicians with the objective of developing a common language and science. The resulting knowledge will be the basis of a new area of engineering and a curriculum in Quantum Engineering, a field that will become very important in the future as the applications of quantum mechanics in everyday life continue to expand. The main mathematical tools used and developed in this research come from the field of differential geometry and in particular Riemannian and sub-Riemannian geometry. The starting point are the so-called KP mathematical models which are models whose state varies on a Lie group and whose dynamical equations correspond to a Cartan decomposition of the associated Lie algebra. The corresponding optimal control problems are, on one hand, very common in applications, and, on the other hand, explicitly solvable. In the project they serve as a test-bed to investigate properties of quantum control systems in general. These involve the role of symmetries, the qualitative behavior of optimal trajectories (geodesics) and the geometry of the reachable sets. A key technical ingredient of the mathematical approach is the use of symmetry reduction as a tool to analyze the control problem on a lower dimensional quotient space. On this space a simpler control problem can be posed and often explicitly solved. This procedure will substantially enlarge the existing toolbox in quantum control, which is frequently restricted to small dimensional systems. The experimental implementations of the resulting control design will be for systems in quantum optics and nuclear magnetic resonance, which are among the most promising candidates for the construction of quantum computers. Furthermore, the mathematical analysis will require the introduction of elements from the theory of singular and stratified spaces, which is important in other areas of applications of control besides quantum mechanics. In this context, this project will contribute to the development of control theory for classical systems as well.
对量子力学系统(如原子、原子核和电子)的状态的精确和有效控制是这些系统的大多数应用中的要求。 这种控制通常通过与外部适当形状的电磁场相互作用来获得。 此外,人们通常不仅希望将状态驱动到期望值,而且还希望优化可用资源。时间的最小化尤为重要。在计算应用中,快速动态导致所实现算法的加速。 此外,一般而言,演变必须发生在数学模型可以被认为有效的时间范围内,在未建模动态的影响变得相关之前。在此背景下,本研究将完成三个相互关联的目标:1)它将提供显式的最优控制设计算法的一个大类的量子力学系统中非常常见的重要应用。 2)它将对对称性在量子控制系统中的作用进行深入的数学分析,以及如何使用这些对称性来简化量子系统的数学模型,从而大大扩展现有的理论。 3)它将通过与实验室的合作,通过量子光学和核磁共振实验来验证数学结果。 总体结果将是一个丰富的工具箱,用于量子力学系统的最佳操纵,用于安全通信,强大的量子计算,测量设备设计,医疗诊断以及一般使用量子系统的每个设备。 这些活动将涉及一个由工程师、物理学家和数学家组成的跨学科研究小组,其目标是发展一种共同的语言和科学。由此产生的知识将成为工程新领域和量子工程课程的基础,随着量子力学在日常生活中的应用不断扩大,该领域在未来将变得非常重要。 在这项研究中使用和开发的主要数学工具来自微分几何领域,特别是黎曼几何和次黎曼几何。出发点是所谓的KP数学模型,其状态在李群上变化,其动力学方程对应于相关李代数的Cartan分解。相应的最优控制问题,一方面,在应用中非常常见,另一方面,显式可解。在该项目中,它们作为一个测试平台,用于研究量子控制系统的一般特性。这些涉及对称性的作用,最佳轨迹(测地线)的定性行为和可达集的几何形状。 一个关键的技术成分的数学方法是使用对称性约简作为工具来分析控制问题的低维商空间。 在这个空间上,可以提出一个更简单的控制问题,并经常明确解决。这一过程将大大扩大量子控制中现有的工具箱,而量子控制通常仅限于小维系统。由此产生的控制设计的实验实现将用于量子光学和核磁共振系统,这是构建量子计算机最有前途的候选者之一。此外,数学分析将需要引入来自奇异和分层空间理论的元素,这在除了量子力学之外的控制应用的其他领域中是重要的。在这种情况下,这个项目将有助于控制理论的发展,以及经典系统。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Time-optimal control of quantum lambda systems in the KP configuration
KP 配置中量子 lambda 系统的时间最优控制
  • DOI:
    10.1063/5.0008034
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    D’Alessandro, Domenico;Sheller, Benjamin A.;Zhu, Zhifei
  • 通讯作者:
    Zhu, Zhifei
Subspace Controllability of Quantum Ising Spin Networks with a Central Spin
具有中心自旋的量子自旋网络的子空间可控性
  • DOI:
    10.23919/ecc.2019.8795643
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Albertini, Francesca;D'Alessandro, Domenico
  • 通讯作者:
    D'Alessandro, Domenico
Symmetric states and dynamics of three quantum bits
  • DOI:
    10.26421/qic22.7-8-1
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Albertini;D. D’Alessandro
  • 通讯作者:
    F. Albertini;D. D’Alessandro
Subspace controllability of bipartite symmetric spin networks
  • DOI:
    10.1016/j.laa.2019.09.034
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    F. Albertini;D. D’Alessandro
  • 通讯作者:
    F. Albertini;D. D’Alessandro
Subspace controllability of multi-partite spin networks
  • DOI:
    10.1016/j.sysconle.2021.104913
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Albertini;D. D’Alessandro
  • 通讯作者:
    F. Albertini;D. D’Alessandro
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Domenico D'Alessandro其他文献

Entanglement of Quantum States which are Zero on the Symmetric Sector
  • DOI:
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Domenico D'Alessandro
  • 通讯作者:
    Domenico D'Alessandro

Domenico D'Alessandro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Domenico D'Alessandro', 18)}}的其他基金

Control Theory for Quantum Walks on Graphs and its Applications to Quantum Algorithms
图上量子行走的控制理论及其在量子算法中的应用
  • 批准号:
    0824085
  • 财政年份:
    2008
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Standard Grant
CAREER: A Methodology for Control of Finite Dimensional Quantum Mechanical Systems
职业:有限维量子机械系统的控制方法
  • 批准号:
    0237925
  • 财政年份:
    2003
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
  • 批准号:
    2339353
  • 财政年份:
    2024
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Continuing Grant
Labor Market Polarization, Earnings Inequality and Optimal Tax Progressivity: A Theoretical and Empirical Analysis
劳动力市场两极分化、收入不平等和最优税收累进性:理论与实证分析
  • 批准号:
    24K04909
  • 财政年份:
    2024
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimal Grain Diagrams: Mathematical Analysis and Algorithms
最佳晶粒图:数学分析和算法
  • 批准号:
    EP/X035883/1
  • 财政年份:
    2023
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Research Grant
Quasiconformal analysis, optimal triangulations and fractal geometry
拟共形分析、最优三角剖分和分形几何
  • 批准号:
    2303987
  • 财政年份:
    2023
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Standard Grant
Artificial intelligence analysis of atrial remodeling evolution in patients with atrial fibrillation: Towards optimal ablation strategies
心房颤动患者心房重塑演变的人工智能分析:寻求最佳消融策略
  • 批准号:
    10559270
  • 财政年份:
    2023
  • 资助金额:
    $ 29.2万
  • 项目类别:
Structure Analysis of Science and Mathematics Problems and Application for Individually Optimal Learning
科学和数学问题的结构分析及其在个体最优学习中的应用
  • 批准号:
    23K02748
  • 财政年份:
    2023
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Nna1's genetic changes and explore for optimal treatment methods
分析Nna1基因变化并探索最佳治疗方法
  • 批准号:
    23K06318
  • 财政年份:
    2023
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Degradation Analysis, Optimal Design, and Intelligent Management of Lithium Ion Batteries
锂离子电池的劣化分析、优化设计与智能管理
  • 批准号:
    RGPIN-2018-05471
  • 财政年份:
    2022
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal and Robust Designs for Active Learning and Regression Analysis
主动学习和回归分析的最佳稳健设计
  • 批准号:
    RGPIN-2020-05283
  • 财政年份:
    2022
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis on metric measure spaces by optimal transport theory and Markov processes
最优输运理论和马尔可夫过程对度量测度空间的分析
  • 批准号:
    22H04942
  • 财政年份:
    2022
  • 资助金额:
    $ 29.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了