Collaborative Research: Connecting Mesoscopic Dynamics of Metallic Films on Semiconductors to Nanoscale Phenomena
合作研究:将半导体上金属薄膜的介观动力学与纳米尺度现象联系起来
基本信息
- 批准号:1710748
- 负责人:
- 金额:$ 28.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical AbstractElectronic devices, such as computers and smartphones, are at the heart of our technological society. Such devices currently are based on semiconductor technology, which involves making electrical contacts between metals and semiconductors. By studying and understanding the details of how metals can be deposited onto semiconductor materials, this project will allow the development of novel methods to grow low dimensional nanostructures, such as extremely thin wires and very thin films. The project connects state-of-the-art experiments to observe the growth properties of the materials with sophisticated theoretical techniques using models consisting of tens to millions of atoms to explore the physics governing the predicted properties of the fabricated nanostructures. Working in conjunction, these methods will facilitate the optimal design and creation of these low dimensional nanostructures. Such structures could be very useful in making future electronic devices, thus maintaining the technological leadership of the U.S. in nanotechnology. Students working on the project will not only gain in-depth physical understanding in the exciting research areas involving metal-semiconductor interfaces but also will engage in outreach activities with local K-12 students and teachers with whom the PIs have on-going interactions, especially through the American Physical Society Physics Teacher Education Coalition (APS PhysTEC). All PIs regularly mentor undergraduate researchers and are actively engaged in recruiting women and underrepresented minority students, particularly through the APS Bridge Program.Technical AbstractThis project will study the growth mechanisms of several metal on semiconductor systems. The objectives of this project are controlling the growth of low-dimensional (1D and 2D) nanostructures, elucidating the novel and complex collective diffusion behavior which has been observed for these systems, and understanding how quantum behavior can influence epitaxial growth in order to facilitate the optimal design and fabrication of novel materials. A complementary set of experimental and theoretical techniques will be applied to examine systematically the initial growth stages and structural evolution of Ag, Au, and Pb nanostructures on single crystal surfaces of Ge and Si. The atomic ordering and adatom binding sites, as well as sizes and shapes of formed islands, will be determined by scanning tunneling microscopy (STM) and low energy electron microscopy/diffraction (LEEM/LEED) and compared with predictions from density functional theory (DFT)-based simulations. Unusual collective behavior of millions of atoms and quantum size effects (QSE) will be investigated to elucidate details of the mechanisms. Scanning tunneling spectroscopy (STS) and angle-resolved photoemission spectroscopy (ARPES) will be used to measure local density of states, k-resolved band structure, and quantum well states; these results will be compared with DFT calculations to understand the factors controlling the nanostructure characteristics and to formulate the physical picture about the basic mechanisms and processes for future growths. Bond order potentials (BOP) will be determined for metals bound to semiconductor surfaces and used for self-learning kinetic Monte Carlo (SLKMC) simulations of the growth and movement of islands. These large-scale simulations will improve understanding of the physical origin of the collective motions and suggest additional experimental systems that may display unusual physical phenomena. The use of Si and Ge-based materials would enable rapid development of technological applications for electronic devices.
电子设备,如计算机和智能手机,是我们技术社会的核心。这种器件目前基于半导体技术,其涉及在金属和半导体之间进行电接触。通过研究和理解金属如何沉积到半导体材料上的细节,该项目将允许开发新的方法来生长低维纳米结构,例如极细的线和非常薄的膜。该项目将最先进的实验与复杂的理论技术相结合,使用由数千万至数百万个原子组成的模型来观察材料的生长特性,以探索控制制造的纳米结构的预测特性的物理学。这些方法结合起来,将有助于这些低维纳米结构的优化设计和创建。这种结构在制造未来的电子设备方面可能非常有用,从而保持美国在纳米技术方面的技术领先地位。从事该项目的学生不仅将在涉及金属-半导体界面的令人兴奋的研究领域获得深入的物理理解,而且还将与当地K-12学生和教师进行外联活动,特别是通过美国物理学会物理教师教育联盟(APS PhysTEC)。所有PI定期指导本科生研究人员,并积极参与招募妇女和代表性不足的少数民族学生,特别是通过APS Bridge Program.Technical Abstract该项目将研究几种金属半导体系统的生长机制。该项目的目标是控制低维(1D和2D)纳米结构的生长,阐明这些系统中观察到的新颖而复杂的集体扩散行为,并了解量子行为如何影响外延生长,以促进新型材料的优化设计和制造。一套互补的实验和理论技术将被应用到系统地研究的初始生长阶段和结构演化的银,Au,和Pb纳米结构的Ge和Si的单晶表面。原子排序和吸附原子结合位点,以及形成的岛屿的大小和形状,将通过扫描隧道显微镜(STM)和低能电子显微镜/衍射(LEEM/LEED)来确定,并与基于密度泛函理论(DFT)的模拟预测进行比较。将研究数百万原子的异常集体行为和量子尺寸效应(QSE),以阐明机制的细节。扫描隧道光谱(STS)和角度分辨光电子能谱(ARPES)将用于测量局域态密度,k分辨能带结构和量子阱态;这些结果将与DFT计算进行比较,以了解控制纳米结构特性的因素,并制定有关未来生长的基本机制和过程的物理图像。键序势(BOP)将被确定为绑定到半导体表面的金属,并用于自学习动力学蒙特卡罗(SLKMC)模拟岛屿的生长和运动。这些大规模的模拟将提高对集体运动的物理起源的理解,并提出可能显示不寻常的物理现象的其他实验系统。Si和Ge基材料的使用将使电子器件的技术应用得到迅速发展。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Observations of the Ag(3 × 1) phase on Ge(111)
Ge(111)上Ag(3→→1)相的观察
- DOI:10.1116/6.0001183
- 发表时间:2021
- 期刊:
- 影响因子:2.9
- 作者:Mullet, Cory H.;Rosen, Anna L.;Chiang, Shirley
- 通讯作者:Chiang, Shirley
Growth, phase transition, and island motion of Au on Ge(111)
Au 在 Ge(111) 上的生长、相变和岛运动
- DOI:10.1063/5.0048882
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Giacomo, J. A.;Mullet, C. H.;Chiang, S.
- 通讯作者:Chiang, S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shirley Chiang其他文献
Spontaneous domain switching during phase separation of Pb on Ge(111).
Pb 在 Ge(111) 上相分离过程中的自发畴切换。
- DOI:
10.1103/physrevlett.99.096103 - 发表时间:
2007 - 期刊:
- 影响因子:8.6
- 作者:
Y. Sato;Shirley Chiang;N. Bartelt - 通讯作者:
N. Bartelt
Structure and topography of molecular assemblies on solid substrates by infrared spectroscopy and scanning tunneling microscopy
- DOI:
10.1007/bf01349717 - 发表时间:
1988-01-01 - 期刊:
- 影响因子:5.300
- 作者:
Vickie M. Hallmark;Andrew Leone;Shirley Chiang;Jerome D. Swalen;John F. Rabolt - 通讯作者:
John F. Rabolt
Shirley Chiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shirley Chiang', 18)}}的其他基金
LEEM and STM Studies of Metal on Semiconductor Growth and Phase Transitions
金属对半导体生长和相变的 LEEM 和 STM 研究
- 批准号:
0719504 - 财政年份:2007
- 资助金额:
$ 28.76万 - 项目类别:
Continuing Grant
Imaging Molecules and Chemical Reactions by Scanning Tunneling Microscopy
通过扫描隧道显微镜对分子和化学反应进行成像
- 批准号:
0111671 - 财政年份:2001
- 资助金额:
$ 28.76万 - 项目类别:
Standard Grant
Imaging Molecular Adsorbates and Chemical Reactions on Metal Surfaces by Scanning Tunneling Microscopy
通过扫描隧道显微镜对金属表面上的分子吸附物和化学反应进行成像
- 批准号:
9520366 - 财政年份:1995
- 资助金额:
$ 28.76万 - 项目类别:
Continuing Grant
Acquisition of an Advanced Surface Microscopy Facility
购置先进的表面显微镜设备
- 批准号:
9512231 - 财政年份:1995
- 资助金额:
$ 28.76万 - 项目类别:
Standard Grant
Development of a Variable Temperature Ultrahigh Vacuum Atomic Force Microscope
变温超高真空原子力显微镜的研制
- 批准号:
9522240 - 财政年份:1995
- 资助金额:
$ 28.76万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
- 批准号:
2323649 - 财政年份:2024
- 资助金额:
$ 28.76万 - 项目类别:
Standard Grant
Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
- 批准号:
2323648 - 财政年份:2024
- 资助金额:
$ 28.76万 - 项目类别:
Standard Grant
Collaborative Research: Disciplinary Improvements for Past Global Change Research: Connecting Data Systems and Practitioners
协作研究:过去全球变化研究的学科改进:连接数据系统和从业者
- 批准号:
2347014 - 财政年份:2023
- 资助金额:
$ 28.76万 - 项目类别:
Standard Grant
Collaborative Research: Disciplinary Improvements for Past Global Change Research: Connecting Data Systems and Practitioners
协作研究:过去全球变化研究的学科改进:连接数据系统和从业者
- 批准号:
2226372 - 财政年份:2023
- 资助金额:
$ 28.76万 - 项目类别:
Standard Grant
Collaborative Research: Connecting the sequence logic of RNA splicing to nuclear localization
合作研究:将 RNA 剪接的序列逻辑与核定位联系起来
- 批准号:
2246530 - 财政年份:2023
- 资助金额:
$ 28.76万 - 项目类别:
Standard Grant
Collaborative Research: Connecting the sequence logic of RNA splicing to nuclear localization
合作研究:将 RNA 剪接的序列逻辑与核定位联系起来
- 批准号:
2246531 - 财政年份:2023
- 资助金额:
$ 28.76万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Medium: Connecting Practitioners to Design: Methods and Tools for Live Participatory Design Fiction
合作研究:HCC:媒介:将从业者与设计联系起来:现场参与式设计小说的方法和工具
- 批准号:
2425383 - 财政年份:2023
- 资助金额:
$ 28.76万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Supporting inclusive and sustainable research infrastructure for systematics (SISRIS) by connecting scientists and their specimens.
协作研究:会议:通过连接科学家及其标本,支持包容性和可持续的系统学研究基础设施 (SISRIS)。
- 批准号:
2247631 - 财政年份:2023
- 资助金额:
$ 28.76万 - 项目类别:
Standard Grant
Collaborative Research: Disciplinary Improvements for Past Global Change Research: Connecting Data Systems and Practitioners
协作研究:过去全球变化研究的学科改进:连接数据系统和从业者
- 批准号:
2226371 - 财政年份:2023
- 资助金额:
$ 28.76万 - 项目类别:
Standard Grant
Collaborative Research: Disciplinary Improvements for Past Global Change Research: Connecting Data Systems and Practitioners
协作研究:过去全球变化研究的学科改进:连接数据系统和从业者
- 批准号:
2226369 - 财政年份:2023
- 资助金额:
$ 28.76万 - 项目类别:
Standard Grant