Broad-Scale Modeling of Complex Networks
复杂网络的大规模建模
基本信息
- 批准号:1710848
- 负责人:
- 金额:$ 29.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many objects of interest in technology, science, and medicine can be represented as networks, including the internet, the power grid, neural networks in the brain, and the contact networks between individuals over which diseases spread. Network theory, which is the subject of this research project, provides a mathematical representation of systems like these which helps us to understand and predict their behavior. This project focuses on modeling networked systems, using mathematical models and computer models. Network models have seen impressive successes in recent years, in areas such as computer and information networks and epidemiology, but a fundamental shortcoming of previous work has been an inability to accurately represent network structure at both small and large scales simultaneously. This project develops new classes of models that achieve this goal, thereby more accurately representing networks as they appear in real life and improving our understanding and ability to predict their behavior. Specific goals of the project include: development of new multiscale mathematical and computer models of networked systems; testing and validation of models to demonstrate how well they capture the features of the systems they represent; model selection methods for determining how best to represent a particular system; anomaly detection in networks; improved computational methods to allow calculations to run efficiently on current computer hardware; and a range of specific applications, for instance to modeling of network resilience and the spread of disease. This project will develop and apply new classes of mathematical models for representing and analyzing networked systems. Network models find wide uses in methods for the analysis of network data, such as community detection, embedding, and visualization, and as the foundation for simulation and modeling of network processes, such as resilience of systems to failure of their components, the spread of diseases over contact networks, or the design and refinement of network protocols and algorithms. A fundamental shortcoming of current network models, however, is their inability to capture network structure accurately on both small and large scales. Models based on local structural motifs, such as the configuration model or subgraph models, capture small-scale structure well, but fail with large-scale structure such as communities, stratification, or core-periphery structure. Models that capture large-scale structure, such as block models, are normally locally tree-like and hence fail badly to capture the small scale. This project will develop a new class of random graph models that naturally integrates the large and small, along with methods for analyzing the models' properties and for rapid Monte Carlo sampling. Maximum-likelihood fitting methods will be developed to fit models to real-world network data, enabling accurate generalization, link prediction, and network reconstruction. Statistical methods for the models will also be developed, including goodness-of-fit tests and model selection methods, along with specific applications, for instance to anomaly detection, network resilience, and epidemic modeling.
在技术、科学和医学中,许多感兴趣的对象都可以表示为网络,包括互联网、电网、大脑中的神经网络以及疾病传播的个体之间的接触网络。 网络理论,这是这个研究项目的主题,提供了这样的系统的数学表示,这有助于我们理解和预测他们的行为。 这个项目的重点是建模网络系统,使用数学模型和计算机模型。 近年来,网络模型在计算机和信息网络以及流行病学等领域取得了令人印象深刻的成功,但以前工作的一个根本缺点是无法同时准确地表示小尺度和大尺度的网络结构。 该项目开发了实现这一目标的新型模型,从而更准确地表示真实的生活中出现的网络,并提高我们的理解和预测其行为的能力。 该项目的具体目标包括:开发网络系统的新的多尺度数学和计算机模型;测试和验证模型,以表明它们如何很好地捕捉它们所代表的系统的特征;确定如何最好地代表特定系统的模型选择方法;网络中的异常检测;改进计算方法,使计算能够在当前计算机硬件上有效运行;以及一系列具体应用,例如网络弹性和疾病传播的建模。 该项目将开发和应用新的数学模型来表示和分析网络系统。 网络模型广泛应用于网络数据分析方法中,如社区检测、嵌入和可视化,以及作为网络过程模拟和建模的基础,如系统对其组件故障的恢复能力、疾病在接触网络上的传播或网络协议和算法的设计和改进。 然而,当前网络模型的一个根本缺点是它们无法在小尺度和大尺度上准确地捕获网络结构。 基于局部结构基元的模型,如配置模型或子图模型,可以很好地捕捉小规模结构,但不能捕捉大规模结构,如社区,分层或核心-外围结构。 捕捉大规模结构的模型,如块模型,通常是局部树状的,因此无法捕捉小规模。 本项目将开发一种新的随机图模型,自然地将大和小结合起来,沿着分析模型属性和快速Monte Carlo采样的方法。 将开发最大似然拟合方法,以将模型拟合到真实世界的网络数据,从而实现准确的泛化、链接预测和网络重建。 还将开发模型的统计方法,包括拟合优度测试和模型选择方法,沿着特定应用,例如异常检测,网络弹性和流行病建模。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Consistency of community structure in complex networks
- DOI:10.1103/physreve.101.052306
- 发表时间:2020-05-08
- 期刊:
- 影响因子:2.4
- 作者:Riolo, Maria A.;Newman, M. E. J.
- 通讯作者:Newman, M. E. J.
Improved mutual information measure for clustering, classification, and community detection
- DOI:10.1103/physreve.101.042304
- 发表时间:2020-04-23
- 期刊:
- 影响因子:2.4
- 作者:Newman, M. E. J.;Cantwell, George T.;Young, Jean-Gabriel
- 通讯作者:Young, Jean-Gabriel
Estimating network structure from unreliable measurements
- DOI:10.1103/physreve.98.062321
- 发表时间:2018-03
- 期刊:
- 影响因子:2.4
- 作者:M. Newman
- 通讯作者:M. Newman
Spectra of random networks with arbitrary degrees
- DOI:10.1103/physreve.99.042309
- 发表时间:2019-01
- 期刊:
- 影响因子:0
- 作者:M. Newman;Xiao Zhang;R. Nadakuditi
- 通讯作者:M. Newman;Xiao Zhang;R. Nadakuditi
Network structure from rich but noisy data
- DOI:10.1038/s41567-018-0076-1
- 发表时间:2018-06-01
- 期刊:
- 影响因子:19.6
- 作者:Newman, M. E. J.
- 通讯作者:Newman, M. E. J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Newman其他文献
Comment on _Self-organized criticality in living systems_ by C. Adami
C. Adami 对“生命系统中的自组织临界性”的评论
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Mark Newman;S. Fraser;K. Sneppen;William A. Tozier - 通讯作者:
William A. Tozier
Efficacy and safety of using auditory-motor entrainment to improve walking after stroke: a multi-site randomized controlled trial of InTandemTM
使用听觉运动牵引改善中风后行走的功效和安全性:InTandemTM 的多中心随机对照试验
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:16.6
- 作者:
Louis N. Awad;Arun Jayaraman;Karen J Nolan;Michael D Lewek;Paolo Bonato;Mark Newman;D. Putrino;Preeti Raghavan;Ryan T Pohlig;Brian A Harris;Danielle A Parker;Sabrina R Taylor - 通讯作者:
Sabrina R Taylor
Coherent noise, scale invariance and intermittency in large systems
大型系统中的相干噪声、尺度不变性和间歇性
- DOI:
10.1016/s0167-2789(97)00128-0 - 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
K. Sneppen;Mark Newman - 通讯作者:
Mark Newman
Distribution of non-myelinating Schwann cells and their associations with leukocytes in mouse spleen revealed by immunofluorescence staining
免疫荧光染色揭示小鼠脾脏中非髓鞘雪旺细胞的分布及其与白细胞的关系
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:2
- 作者:
Bin Ma;Changfu Yin;D. Hu;Mark Newman;P. Nicholls;Zhanjun Wu;W. Greene;Zhongli Shi - 通讯作者:
Zhongli Shi
A ‘Patchy’ Approach to Chest Wall Resection and Reconstruction for Malignancy
- DOI:
10.1016/j.hlc.2017.03.081 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:
- 作者:
Gianna Pastore;Laura Fong;Mark Newman;Lucas Sanders - 通讯作者:
Lucas Sanders
Mark Newman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Newman', 18)}}的其他基金
Structure and Function in Large-Scale Complex Networks
大规模复杂网络的结构和功能
- 批准号:
2005899 - 财政年份:2020
- 资助金额:
$ 29.45万 - 项目类别:
Standard Grant
Large scale structure in complex networks
复杂网络中的大规模结构
- 批准号:
1407207 - 财政年份:2014
- 资助金额:
$ 29.45万 - 项目类别:
Continuing Grant
CAREER: Improving the Development Process for Context-Aware Systems with Integrated Capture and Playback
职业:通过集成捕获和回放改进上下文感知系统的开发流程
- 批准号:
1149601 - 财政年份:2012
- 资助金额:
$ 29.45万 - 项目类别:
Standard Grant
Large-scale structure in complex networks
复杂网络中的大规模结构
- 批准号:
1107796 - 财政年份:2011
- 资助金额:
$ 29.45万 - 项目类别:
Standard Grant
HCC: Medium: Collaborative Configuration: Supporting End-User Control of Complex Computing
HCC:中:协作配置:支持复杂计算的最终用户控制
- 批准号:
0905460 - 财政年份:2009
- 资助金额:
$ 29.45万 - 项目类别:
Continuing Grant
Desegregating Dixie: Southern Catholics and Desegregation, 1945-1980
废除迪克西种族隔离:南方天主教徒和废除种族隔离,1945 年至 1980 年
- 批准号:
AH/E004970/1 - 财政年份:2008
- 资助金额:
$ 29.45万 - 项目类别:
Research Grant
The Structure and Dynamics of Social Networks and Other Networked Systems
社交网络和其他网络系统的结构和动态
- 批准号:
0804778 - 财政年份:2008
- 资助金额:
$ 29.45万 - 项目类别:
Standard Grant
"Structure and Dynamics of Social Networks and Other Networked Systems."
“社交网络和其他网络系统的结构和动态。”
- 批准号:
0405348 - 财政年份:2004
- 资助金额:
$ 29.45万 - 项目类别:
Standard Grant
Structure and Dynamics of Social Networks and Other Networked Systems
社交网络和其他网络系统的结构和动态
- 批准号:
0234188 - 财政年份:2002
- 资助金额:
$ 29.45万 - 项目类别:
Continuing Grant
Structure and Dynamics of Social Networks and Other Networked Systems
社交网络和其他网络系统的结构和动态
- 批准号:
0109086 - 财政年份:2001
- 资助金额:
$ 29.45万 - 项目类别:
Continuing Grant
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
RII Track-4:NSF: Continental-scale, high-order, high-spatial-resolution, ice flow modeling based on graphics processing units (GPUs)
RII Track-4:NSF:基于图形处理单元 (GPU) 的大陆尺度、高阶、高空间分辨率冰流建模
- 批准号:
2327095 - 财政年份:2024
- 资助金额:
$ 29.45万 - 项目类别:
Standard Grant
CAREER: Evolutionary Games in Dynamic and Networked Environments for Modeling and Controlling Large-Scale Multi-agent Systems
职业:动态和网络环境中的进化博弈,用于建模和控制大规模多智能体系统
- 批准号:
2239410 - 财政年份:2023
- 资助金额:
$ 29.45万 - 项目类别:
Continuing Grant
Innovative Butterfly-Compressed Microlocal Hadamard-Babich Integrators for Large-Scale High-Frequency Wave Modeling and Inversion in Variable Media
用于可变介质中大规模高频波建模和反演的创新型蝶形压缩微局域 Hadamard-Babich 积分器
- 批准号:
2309534 - 财政年份:2023
- 资助金额:
$ 29.45万 - 项目类别:
Standard Grant
Multi-scale functional dissection and modeling of regulatory variation associated with human traits
与人类特征相关的调控变异的多尺度功能剖析和建模
- 批准号:
10585180 - 财政年份:2023
- 资助金额:
$ 29.45万 - 项目类别:
DISES: Multi-scale modeling of interactions between climate change, air quality, and social inequalities
DISES:气候变化、空气质量和社会不平等之间相互作用的多尺度建模
- 批准号:
2420344 - 财政年份:2023
- 资助金额:
$ 29.45万 - 项目类别:
Standard Grant
ERI: Computational Investigation of High-Pressure Turbulent Premixed Flames - Physical Insights and Two-Scale Predictive Modeling
ERI:高压湍流预混火焰的计算研究 - 物理见解和两尺度预测建模
- 批准号:
2301829 - 财政年份:2023
- 资助金额:
$ 29.45万 - 项目类别:
Standard Grant
Measurement and Modeling of Within-Person Variability in Cannabis Protective Behavioral Strategies: A Novel Approach Using Scale Development, Daily Data, and Machine Learning Methods
大麻保护行为策略中人内变异性的测量和建模:一种使用量表开发、每日数据和机器学习方法的新方法
- 批准号:
10604567 - 财政年份:2023
- 资助金额:
$ 29.45万 - 项目类别:
Multi-scale modeling of thermal and fluid flow of cryogenic liquid hydrogen applied for liquid rocket propulsion system
用于液体火箭推进系统的低温液氢热流和流体流的多尺度建模
- 批准号:
23H01606 - 财政年份:2023
- 资助金额:
$ 29.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ATD: Collaborative Research: Multi-task, Multi-Scale Point Processes for Modeling Infectious Disease Threats
ATD:协作研究:用于建模传染病威胁的多任务、多尺度点过程
- 批准号:
2317397 - 财政年份:2023
- 资助金额:
$ 29.45万 - 项目类别:
Standard Grant
Quantum-Assisted Flood Modeling: Pioneering Large-Scale Analysis for Enhanced Risk Assessment
量子辅助洪水建模:开创性大规模分析以增强风险评估
- 批准号:
10083669 - 财政年份:2023
- 资助金额:
$ 29.45万 - 项目类别:
Small Business Research Initiative