Multi-scale functional dissection and modeling of regulatory variation associated with human traits
与人类特征相关的调控变异的多尺度功能剖析和建模
基本信息
- 批准号:10585180
- 负责人:
- 金额:$ 74.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-16 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:AddressAllelesArchitectureBindingBiological AssayCCRL2 geneCRISPR screenCRISPR/Cas technologyCatalogsCellsChIP-seqChromosome MappingClustered Regularly Interspaced Short Palindromic RepeatsCodeComplexDataDepositionDetectionDevelopmentDiseaseDissectionEpigenetic ProcessEtiologyGene ExpressionGene TargetingGenesGeneticGenetic TranscriptionGenetic VariationGenomeGenomic SegmentGenomicsGoalsHealthHumanHuman GeneticsHuman GenomeIndividualInvestigationKnowledgeLinkLipidsLocationLogicMachine LearningMapsMediatingMetabolicMetabolic DiseasesModelingMolecularMutagenesisMutagensMutationNucleic Acid Regulatory SequencesNucleotidesOutcomePhenotypePopulationRegulator GenesRegulatory ElementStructureSystemTechniquesTrainingTranscriptTranscriptional RegulationTranslatingUntranslated RNAVariantcausal variantcomputer frameworkdisorder riskexperimental studyfunctional genomicsgene interactiongenetic variantgenome wide association studygenomic locusimprovedinsightmachine learning modelmachine learning predictionnetwork architecturenovelprediction algorithmpredictive modelingtooltraittranscription factortranscriptome
项目摘要
Our ability to identify genetic sequence variation in humans has thus far outstripped the field’s ability to
interpret these mutations. Genome-wide association studies have identified hundreds of thousands of genomic
loci associated with disease risk and human phenotypic traits, yet in few instances do we know the identity of
the exact causal mutation, nor the molecular mechanism behind its function. Much of this limitation is due to a
large portion of this variation residing in cis-regulatory regions (CREs), where our inability to identify a variants’
regulatory impacts or target gene(s) presents a major hurdle. Better understanding of this regulatory grammar -
the complex logic of how sequence content in CREs controls transcription – is a crucial next step for genomics,
but requires a vast expansion of well characterized regulatory mutations.
To achieve this goal, we will employ a multi-pronged approach to build a large-scale, regulatory variant
functional catalog. We will focus on CREs harboring genetically fine-mapped, likely causal variants from global
populations for a variety of metabolic traits and disease (Aim 1). We will first identify CRE-gene interactions
using highly-sensitive and scalable endogenous CRISPR approaches. This large-scale mapping effort will
inform our understanding of the CRE-gene targeting logic of regulatory grammar. We will use this data to map
the transcriptional architecture of metabolic complex traits. We then propose to interrogate sequence
determinants of regulatory grammar for hundreds of trait-associated CREs at their endogenous location in the
genome (Aim 2). We will first develop an endogenous saturation mutagenesis system to generate hundreds of
thousands of nucleotide changes in these CREs. We will then assay the regulatory architecture of these
changes using multiplexed amplicon ChIP-sequencing to identify epigenetic changes, and HCR-FlowFISH to
detect transcriptional changes. In addition to identifying causal variants for a variety of metabolic diseases, this
proposal will generate a repertoire of
300,000+ functionally characterized regulatory variants. This variant
impact catalog will serve as an ideal training set to model regulatory grammar with our powerful machine
learning approaches. We will incorporate endogenous saturation mutagenesis data into our variant effect
prediction models (VEPs). Importantly, such models will find utility across global populations as they will
explain a universal regulatory code of the human genome and thus enable interpretation of population-specific
variation. We will then deploy these VEPs to understudied variation and in understudied populations.
Overall, this proposal is structured to generate a functional characterization catalog at multiple levels:
first providing molecular mechanisms and gene targets for thousands of causal variants, secondly building
comprehensive genomic etiological understanding for phenotypically related complex traits, and lastly
providing the scale of endogenous data necessary to improve VEPs. Our approach combines our group’s
unique expertise spanning functional genomics, CRISPR screens, statistical genetics, and machine learning.
我们鉴定人类遗传序列变异的能力已经超过了该领域的能力
解释这些突变。全基因组关联研究已经确定了数十万个基因组
与疾病风险和人类表型特征相关的基因座,但在少数情况下,我们知道
确切的因果突变,也是其功能背后的分子机制。这个限制的很大是由于
居住在顺式调节区域(CRE)中的大部分变化,我们无法识别变体
监管影响或靶基因提出了一个重大障碍。更好地了解这种法规语法 -
CRES中序列含量如何控制转录的复杂逻辑 - 对于基因组学的下一步至关重要,
但是需要大量的特征性调节突变。
为了实现这一目标,我们将采用一种多管制的方法来建立大规模的监管变体
功能目录。我们将专注于具有一般绘制的一般绘制的,可能来自全球的因果变体
各种代谢特征和疾病的种群(AIM 1)。我们将首先确定Cre-Gene互动
使用高敏感和可扩展的内源性CRISPR方法。这种大规模的映射工作将
告知我们对监管语法的Cre-Gene靶向逻辑的理解。我们将使用此数据映射
代谢复杂性状的转录结构。然后,我们建议审问序列
在其内源性位置的数百个性状相关CRE的调节语法决定因素
基因组(目标2)。我们将首先开发一个内源性饱和诱变系统,以产生数百个
这些CRE的数千个核苷酸变化。然后,我们将主张这些的监管架构
使用多路复用扩增子芯片序列的变化以识别表观遗传变化,并将hcr-flowfish识别为
检测转录变化。除了确定各种代谢疾病的因果变异,这还
提案将产生
300,000多个功能表征的调节变体。这个变体
Impact目录将用作理想的培训,以使用我们强大的机器建模监管语法
学习方法。我们将将内源性饱和诱变数据纳入我们的变体效应
预测模型(VEP)。重要的是,这样的模型将在全球人口中找到效用
解释人类基因组的普遍调节守则,从而可以解释人口特定的
变化。然后,我们将部署这些VEP,以了解变化和理解人群。
总体而言,该建议的结构是生成多个级别的功能表征目录:
首先提供数千种因果变体的分子机制和基因靶标,第二建筑物
对表型相关的复杂性状的全面基因组病因理解,最后
提供改善VEP所需的内源数据的规模。我们的方法结合了我们小组的
跨越功能基因组学,CRISPR筛选,统计遗传学和机器学习的独特专业知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven K. Reilly其他文献
Massively parallel discovery of human-specific substitutions that alter neurodevelopmental enhancer activity
大规模并行发现改变神经发育增强子活性的人类特异性替代
- DOI:
10.1101/865519 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Severin Uebbing;Jake Gockley;Steven K. Reilly;Acadia A. Kocher;Evan T. Geller;Neeru Gandotra;C. Scharfe;J. Cotney;J. Noonan - 通讯作者:
J. Noonan
Functional characterization of thousands of type 2 diabetes-associated and chromatin-modulating variants under steady state and endoplasmic reticulum stress
稳态和内质网应激下数千种 2 型糖尿病相关变异和染色质调节变异的功能特征
- DOI:
10.1101/2020.02.12.939348 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Shubham Khetan;S. Kales;R. Kursawe;Alexandria Jillette;Steven K. Reilly;D. Ucar;R. Tewhey;M. Stitzel - 通讯作者:
M. Stitzel
Steven K. Reilly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven K. Reilly', 18)}}的其他基金
Comprehensive Characterization of Adaptive Regulatory Variation Linked to Human Disease
与人类疾病相关的适应性调节变异的综合表征
- 批准号:
10487545 - 财政年份:2021
- 资助金额:
$ 74.64万 - 项目类别:
Comprehensive Characterization of Adaptive Regulatory Variation Linked to Human Disease
与人类疾病相关的适应性调节变异的综合表征
- 批准号:
10469855 - 财政年份:2021
- 资助金额:
$ 74.64万 - 项目类别:
Comprehensive Characterization of Adaptive Regulatory Variation Linked to Human Disease
与人类疾病相关的适应性调节变异的综合表征
- 批准号:
10654818 - 财政年份:2021
- 资助金额:
$ 74.64万 - 项目类别:
Comprehensive Characterization of Adaptive Regulatory Variation Linked to Human Disease
与人类疾病相关的适应性调节变异的综合表征
- 批准号:
9805238 - 财政年份:2019
- 资助金额:
$ 74.64万 - 项目类别:
Comprehensive Characterization of Adaptive Regulatory Variation Linked to Human Disease
与人类疾病相关的适应性调节变异的综合表征
- 批准号:
10005404 - 财政年份:2019
- 资助金额:
$ 74.64万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于等位基因非平衡表达的鹅掌楸属生长量杂种优势机理研究
- 批准号:32371910
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 74.64万 - 项目类别:
Molecular analysis of glutamatergic neurons derived from iPSCs containing PPM1D truncating mutations found in Jansen de Vries Syndrome
Jansen de Vries 综合征中发现的含有 PPM1D 截短突变的 iPSC 衍生的谷氨酸能神经元的分子分析
- 批准号:
10573782 - 财政年份:2023
- 资助金额:
$ 74.64万 - 项目类别:
Genetic regulation of genes on active and inactive X chromosome and their contribution to sex-biased diseases
活性和非活性 X 染色体上基因的遗传调控及其对性别偏见疾病的贡献
- 批准号:
10751331 - 财政年份:2023
- 资助金额:
$ 74.64万 - 项目类别:
Assembly and re-alignment of HLA genomic region and its implication for fine-mapping suicidality in African descent population
HLA基因组区域的组装和重新排列及其对非洲人后裔自杀倾向精细定位的意义
- 批准号:
10797122 - 财政年份:2023
- 资助金额:
$ 74.64万 - 项目类别:
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10834336 - 财政年份:2023
- 资助金额:
$ 74.64万 - 项目类别: