Quantum Magnetometers for Rapid Identification of Resonance Frequencies in Explosives, Pharmaceuticals, and Other Substances

用于快速识别炸药、药品和其他物质共振频率的量子磁力计

基本信息

  • 批准号:
    1711118
  • 负责人:
  • 金额:
    $ 34.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Crystalline solids, such as explosives and pharmaceuticals, have intrinsic resonances that provide a unique radio-frequency fingerprint for the material. Simply exciting the sample with a magnetic wave at its resonance frequency, yields a signal. However, weak signal strength and months-long searches for resonances in unstudied materials prevent ready adoption of this inexpensive and simple technique, known as nuclear quadrupole resonance. Quantum magnetometers, with sensitivities better than standard coil detectors, help with the former problem, but will, with this project, be developed to increase the search speed, potentially five orders of magnitude faster than the conventional method. Despite the difficulty of discovering new resonance lines, researchers have pursued the use of quadrupole resonance for substance detection in a few applications of critical importance for security and society; in particular, the detection of explosives and the identification of counterfeit from real medicine at checkpoints. The adoption of quadrupole resonance for checkpoint and standards applications would greatly expand if resonance lines could be quickly identified for new materials. In addition to national security benefits, the project will improve science, technology, engineering and mathematics education within George Mason by forging strong ties between the Electrical Engineering and Physics Departments through revitalized laboratory courses. Furthermore, by creating undergraduate internship projects focused on K-12 educational experiences, fledgling science teachers will be nurtured and seeds of a diverse and competitive technology and engineering workforce will be planted.Atomic magnetometers are fundamentally different sensors than coils. The use of optically aligned atoms as the detection medium and optical read-out of the sensor with a laser gives a better detection sensitivity than coils; noise in the magnetometer is fundamentally limited by quantum fluctuations. Moreover, the operating frequency of the magnetometer can easily be changed to match the frequency of the excitation with a small static magnetic field. In light of these advantages, the excitation frequency can be swept continuously, as opposed to pulsed excitation at a single operating frequency, obviating the need for a point by point search. With pulsed excitation the material must return to an equilibrium condition before another signal is acquired; often long wait times are required between data acquisitions. However by sweeping up through higher frequencies, then back down to the original frequency, the material is automatically returned to equilibrium. In this way, the long wait times that compromise the effectiveness of standard pulse techniques is avoided. As part of the project, the following goals will be met: 1) Magnetometer cells with an active volume of 2 cm3 will be designed and constructed. The resulting magnetometer will have sub-femtoTesla sensitivity. The small volume is critical for the practical implementation of the resonance search with a limited quantity of material.2) Continuously tuning the magnetometer to a changing frequency will not alter its sensitivity.3) The sensitivity of the magnetometer can be retained while resonant excitation on the order of a 100 micro Tesla is applied to a sample a couple centimeters away. Coil geometry and common mode rejection schemes using a second magnetometer will be employed.4) If the above three goals are achieved, the search speed for resonance frequencies can be improved by as much as five orders of magnitude over conventional techniques.
晶体固体,如炸药和药品,具有固有的共振,为材料提供了独特的射频指纹。简单地用磁波以样品的共振频率激励样品,就会产生一个信号。然而,微弱的信号强度和对未研究材料的共振的长达数月的搜索阻碍了这种廉价而简单的技术的迅速采用,这种技术被称为核四极共振。具有比标准线圈探测器更高灵敏度的量子磁强计,有助于解决前一个问题,但通过这个项目,将被开发来提高搜索速度,可能比传统方法快五个数量级。尽管很难发现新的共振线,但研究人员在一些对安全和社会至关重要的应用中继续使用四极共振进行物质检测;特别是在检查站检测爆炸物和识别伪劣药品和真品。如果能迅速确定新材料的共振线,则在检查点和标准应用中采用四极共振将大大扩大应用范围。除了国家安全方面的好处,该项目还将通过振兴实验室课程,在电气工程系和物理系之间建立牢固的联系,从而改善乔治·梅森内部的科学、技术、工程和数学教育。此外,通过创建专注于K-12教育经验的本科生实习项目,将培养初出茅庐的科学教师,并将种植多样化和具有竞争力的技术和工程劳动力的种子。原子磁强计是与线圈根本不同的传感器。使用光学排列的原子作为检测介质,并使用激光光学读出传感器,比使用线圈提供更好的检测灵敏度;磁强计中的噪声从根本上受到量子涨落的限制。此外,磁力计的工作频率可以很容易地改变,以与小静磁场的励磁频率相匹配。鉴于这些优点,激励频率可以连续扫描,而不是在单一工作频率下的脉冲激励,从而消除了逐点搜索的需要。使用脉冲激励时,材料必须在采集另一个信号之前返回到平衡状态;数据采集之间通常需要很长的等待时间。然而,通过向上扫描更高的频率,然后向下返回到原始频率,材料会自动恢复到平衡。通过这种方式,避免了危及标准脉冲技术有效性的长等待时间。作为该项目的一部分,将实现以下目标:1)设计和建造有效体积为2立方米的磁强计单元。由此产生的磁强计将具有亚飞特斯拉的灵敏度。小体积对于使用有限数量的材料进行共振搜索的实际实施至关重要。2)连续将磁强计调整到改变频率不会改变其灵敏度。3)在对几厘米外的样品施加约100微特斯拉的共振激励时,磁强计的灵敏度可以保持。将采用线圈几何结构和使用第二个磁强计的共模抑制方案。4)如果实现上述三个目标,对共振频率的搜索速度可以比传统技术提高多达五个数量级。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Homogeneous fields: Double expansion method, 3D printing/CNC realization, and verification by atomic magnetometry
均匀场:双展开法、3D打印/CNC实现、原子磁力验证
  • DOI:
    10.1016/j.jmr.2020.106738
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Rodriguez Castillo, Daniel A.
  • 通讯作者:
    Rodriguez Castillo, Daniel A.
Intrinsic radio-frequency gradiometer
  • DOI:
    10.1103/physreva.106.053113
  • 发表时间:
    2022-11-23
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Cooper, Robert J.;Prescott, David W.;Romalis, Michael V.
  • 通讯作者:
    Romalis, Michael V.
The Predictive Power of Different Projector-Augmented Wave Potentials for Nuclear Quadrupole Resonance
  • DOI:
    10.3390/cryst9100507
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Ansari, Jaafar N.;Sauer, Karen L.;Glasbrenner, James K.
  • 通讯作者:
    Glasbrenner, James K.
Interleaved NQR detection using atomic magnetometers
使用原子磁力计进行交错 NQR 检测
  • DOI:
    10.1016/j.jmr.2022.107288
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Quiroz, Darwin R.;Cooper, Robert J.;Foley, Elizabeth L.;Kornack, Thomas W.;Lee, Garrett J.;Sauer, Karen L.
  • 通讯作者:
    Sauer, Karen L.
Pulsed spin-locking of spin-3/2 nuclei: 39K-NQR of potassium chlorate
自旋 3/2 核的脉冲自旋锁定:氯酸钾的 39K-NQR
  • DOI:
    10.1016/j.jmr.2022.107145
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Nixon, Kyle Edward;Sauer, Karen L.
  • 通讯作者:
    Sauer, Karen L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karen Sauer其他文献

Socioeconomic inequality and its association with traffic accidents in Great Santiago, Chile
智利大圣地亚哥的社会经济不平等及其与交通事故的关系
Spatial Analysis of the effect of the pandemic due to COVID-19 on traffic crashes in the districts of Valparaíso and Viña del Mar, Chile
COVID-19 大流行对智利瓦尔帕莱索和比尼亚德尔马地区交通事故影响的空间分析

Karen Sauer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karen Sauer', 18)}}的其他基金

Experimental and theoretical studies of iron pnictides through zero field nuclear magnetic resonance
铁磷化物的零场核磁共振实验与理论研究
  • 批准号:
    2214194
  • 财政年份:
    2022
  • 资助金额:
    $ 34.84万
  • 项目类别:
    Standard Grant
EXP-SA: Collaborative Research: Quantum magnetometer for detection of explosives with nuclear quadrupole resonance
EXP-SA:合作研究:利用核四极共振检测爆炸物的量子磁力计
  • 批准号:
    0730473
  • 财政年份:
    2007
  • 资助金额:
    $ 34.84万
  • 项目类别:
    Standard Grant
CAREER: Pushing low-field magnetic resonance to the limit
事业:将低场磁共振推向极限
  • 批准号:
    0547987
  • 财政年份:
    2006
  • 资助金额:
    $ 34.84万
  • 项目类别:
    Continuing Grant
ADVANCE Fellows Award
高级研究员奖
  • 批准号:
    0137971
  • 财政年份:
    2002
  • 资助金额:
    $ 34.84万
  • 项目类别:
    Standard Grant

相似海外基金

MEG-system with Optically Pumped Magnetometers (OPMs) (Teilfinanzierung)
配备光泵磁力计 (OPM) 的 MEG 系统(部分融资)
  • 批准号:
    527932280
  • 财政年份:
    2023
  • 资助金额:
    $ 34.84万
  • 项目类别:
    Major Research Instrumentation
Fiber-integrated diamond-based whispering-gallery-mode magnetometers
光纤集成金刚石基回音壁模式磁力计
  • 批准号:
    23K04617
  • 财政年份:
    2023
  • 资助金额:
    $ 34.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum geo-magnetometers – a UK sovereign commercial OPM for enhanced GNSS-denied navigation
量子地磁计 — 英国主权商业 OPM,用于增强 GNSS 拒绝导航
  • 批准号:
    10083988
  • 财政年份:
    2023
  • 资助金额:
    $ 34.84万
  • 项目类别:
    Small Business Research Initiative
Realising the potential of magnetoencephalography (MEG) using Optically Pumped Magnetometers (OPMs)
使用光泵磁力计 (OPM) 实现脑磁图 (MEG) 的潜力
  • 批准号:
    MR/X012263/1
  • 财政年份:
    2022
  • 资助金额:
    $ 34.84万
  • 项目类别:
    Research Grant
Non-cryogenic Fieldable Interleaved Magnetoencephalography and Magnetic Resonance Imaging based on Multichannel Atomic Magnetometers
基于多通道原子磁强计的非低温现场交错脑磁图和磁共振成像
  • 批准号:
    10596209
  • 财政年份:
    2022
  • 资助金额:
    $ 34.84万
  • 项目类别:
Development, design, test, and flight of magnetometers for space and for UAV surveying
用于太空和无人机测量的磁力计的开发、设计、测试和飞行
  • 批准号:
    573086-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 34.84万
  • 项目类别:
    University Undergraduate Student Research Awards
Precision atomic magnetometers
精密原子磁力计
  • 批准号:
    564308-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 34.84万
  • 项目类别:
    University Undergraduate Student Research Awards
Miniaturised Magnetometers for Satellite and Terrestrial Remote Sensing
用于卫星和地面遥感的小型磁力计
  • 批准号:
    563222-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 34.84万
  • 项目类别:
    University Undergraduate Student Research Awards
Investigating the Use of Optically Pumped Magnetometers in Conjunction with Electrical Impedance Tomography to Image Brain Activity
研究使用光泵磁力计与电阻抗断层扫描相结合对大脑活动进行成像
  • 批准号:
    2407242
  • 财政年份:
    2020
  • 资助金额:
    $ 34.84万
  • 项目类别:
    Studentship
Development Of Brain Imaging Using Fast Neural Electrical Impedance Tomography And Magnetometers
使用快速神经电阻抗断层扫描和磁力计开发脑成像
  • 批准号:
    2417010
  • 财政年份:
    2020
  • 资助金额:
    $ 34.84万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了