Representation Frames and Applications

表示框架和应用

基本信息

项目摘要

In many engineering applications signals pass through linear systems, but in this process the recorded phase information can be lost or distorted. Examples of this problem occur in speech recognition, quantum state tomography, x-ray crystallography, and electron microscopy. The frame based phase retrieval problem is to recover a signal from the absolute values of its frame measurement coefficients. The central theme of this project lies in the investigation of the theory of phase-retrievable representation frames and its state-of-the-art applications in signal processing and information theory. The main objective is to establish the theoretical foundations for phase-retrievable representation frames and develop new representation frame based recovering algorithms that will address the computational cost problems in the existed recovering algorithms. The project will focus on three main problems in frame based phase retrieval. The first is representation frames and phase-retrieval. Due to their nice algebraic and/or geometric features, well-structured frames are excellent candidates for applications. This part of the project will focus on establishing the theory for finite group projective representation frames that admit phase-retrievable frame vectors. The goal is to completely characterize all such representations, and obtain simple and easily verifiable criterion for all the phase-retrievable frame generators so that they can be easily constructed for applications. The investigation on the representation phase-retrievable frames for ordered product of semi-groups is in line within the scope of representation frames and is directly targeting at applications such as dynamic sampling. The second project will focus on phase-retrieval for signals in the union of lower dimensional spaces. Many applications often face great computational challenges when recovering lower dimensional signals sitting in a very large dimensional Hilbert space. Building the theoretical foundation for the existence of phase-retrievable representation frames with much smaller length for such signals will greatly reduce the encoding frame length and obtain good characterizations for all such frames. The third project is on representation frames in erasure-corrupted signal recovering. Data transmission often causes erasures and other type distortions. In many cases the locations of erased frame coefficients are unknown, and/or the received partial data might be disordered. This project will investigate several practical problems with applications of representation frames in signal recovering from disordered partial frame coefficients and in the frame design problem for encoder-decoder protections.
在许多工程应用中,信号通过线性系统,但在这个过程中,记录的相位信息可能会丢失或失真。这个问题的例子出现在语音识别,量子态断层扫描,X射线晶体学和电子显微镜。 基于帧的相位恢复问题是从信号的帧测量系数的绝对值恢复信号。该项目的中心主题在于相位可恢复表示框架理论的研究及其在信号处理和信息论中的最新应用。本文的主要目的是为相位可恢复的表示框架建立理论基础,并针对现有恢复算法中存在的计算量大的问题,提出新的基于表示框架的恢复算法。该项目将集中在基于帧的相位检索的三个主要问题。首先是表征框架和相位检索。由于其良好的代数和/或几何特征,结构良好的框架是应用的优秀候选者。该项目的这一部分将重点建立允许相位可检索框架向量的有限群投影表示框架的理论。我们的目标是完全表征所有这些表示,并获得简单,易于验证的标准,所有的相位可检索的帧生成器,使他们可以很容易地构造的应用程序。半群有序积的表示相位可恢复框架的研究属于表示框架的范畴,直接针对动态抽样等应用。第二个项目将集中在低维空间的联合信号的相位检索。当恢复位于非常大维度的希尔伯特空间中的低维信号时,许多应用经常面临巨大的计算挑战。为这类信号的相位可恢复表示帧的存在建立理论基础,将大大减少编码帧的长度,并获得所有此类帧的良好表征。第三个项目是关于擦除信号恢复中的表示帧。数据传输经常导致擦除和其他类型的失真。在许多情况下,擦除帧系数的位置是未知的,和/或接收到的部分数据可能是无序的。本计画将探讨几个实际问题,应用代表帧于从乱序部分帧系数中恢复信号,以及编码器-解码器保护的帧设计问题。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Functional Matrix Multipliers for Parseval Gabor Multi-frame Generators
Parseval Gabor 多帧生成器的函数矩阵乘法器
  • DOI:
    10.1007/s10440-018-0194-x
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Zhongyan Li;Deguang Han
  • 通讯作者:
    Deguang Han
Stable recovery of signals from frame coefficients with erasures at unknown locations
从未知位置擦除的帧系数中稳定恢复信号
  • DOI:
    10.1007/s11425-016-9143-2
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deguang Han;Fusheng Lv;Wenchang Sun
  • 通讯作者:
    Wenchang Sun
Phase Retrievable Projective Representation Frames for Finite Abelian Groups
  • DOI:
    10.1007/s00041-017-9570-6
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Lan Li;Ted Juste;J. Brennan;Chuangxun Cheng;D. Han
  • 通讯作者:
    Lan Li;Ted Juste;J. Brennan;Chuangxun Cheng;D. Han
Phase-retrievable operator-valued frames and representations of quantum channels
Frames and Finite-Rank Integral Representations of Positive Operator-Valued Measures
  • DOI:
    10.1007/s10440-019-00252-6
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    J. Gabardo;D. Han
  • 通讯作者:
    J. Gabardo;D. Han
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Deguang Han其他文献

The correlation numerical range of a matrix and Connes’ embedding problem
  • DOI:
    10.1016/j.laa.2011.10.017
  • 发表时间:
    2012-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Don Hadwin;Deguang Han
  • 通讯作者:
    Deguang Han
OnM-ideals and best approximation
On twisted group frames
  • DOI:
    https://doi.org/10.1016/j.laa.2018.11.034
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
  • 作者:
    Chuangxun Cheng;Deguang Han
  • 通讯作者:
    Deguang Han
Frame vector multipliers for finite group representations
有限群表示的帧向量乘法器
The Density Theorem for Operator-Valued Frames via Square-Integrable Representations of Locally Compact Groups

Deguang Han的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Deguang Han', 18)}}的其他基金

Frame Phase-Retrievability and Applications to Quantum Information
帧相位可恢复性及其在量子信息中的应用
  • 批准号:
    2105038
  • 财政年份:
    2021
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Standard Grant
Frame-Based Kernel Analysis and Algorithms for Fast Recovery of Erasures and Multiplexing
用于快速恢复擦除和复用的基于帧的内核分析和算法
  • 批准号:
    1403400
  • 财政年份:
    2014
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Standard Grant
Optimal and Structured Frames with Applications
最佳结构化框架及应用
  • 批准号:
    1106934
  • 财政年份:
    2011
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference Support: Operator Theory/Operator Algebras, GPOTS 05-06; University of Central Florida, June 2005; University of Iowa, May 2006
协作研究:会议支持:算子理论/算子代数,GPOTS 05-06;
  • 批准号:
    0504004
  • 财政年份:
    2005
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Standard Grant

相似海外基金

Compactly supported directional wavelet frames and their applications
紧支持的方向小波框架及其应用
  • 批准号:
    RGPIN-2019-04276
  • 财政年份:
    2022
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Discovery Grants Program - Individual
Compactly supported directional wavelet frames and their applications
紧支持的方向小波框架及其应用
  • 批准号:
    RGPIN-2019-04276
  • 财政年份:
    2021
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Discovery Grants Program - Individual
Compactly supported directional wavelet frames and their applications
紧支持的方向小波框架及其应用
  • 批准号:
    RGPIN-2019-04276
  • 财政年份:
    2020
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Discovery Grants Program - Individual
Compactly supported directional wavelet frames and their applications
紧支持的方向小波框架及其应用
  • 批准号:
    RGPIN-2019-04276
  • 财政年份:
    2019
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Discovery Grants Program - Individual
Hilbert Space Frames and their applications
希尔伯特空间框架及其应用
  • 批准号:
    1609760
  • 财政年份:
    2016
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Standard Grant
RUI: Development of Sparsity-inducing Dual Frames and Algorithms with Applications, II
RUI:稀疏性双框架和算法的开发及其应用,II
  • 批准号:
    1615288
  • 财政年份:
    2016
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Standard Grant
Moving Frames on Lattices and Applications
格子上的移动框架及其应用
  • 批准号:
    1405722
  • 财政年份:
    2014
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Standard Grant
RUI: Development of Sparsity-Inducing Dual Frames and Applications
RUI:稀疏性双框架的开发和应用
  • 批准号:
    1313490
  • 财政年份:
    2013
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Standard Grant
Multivariate wavelet frames in various function spaces and their applications
各种函数空间中的多元小波框架及其应用
  • 批准号:
    228051-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Frames to Problems in Mathematics and Engineering II
框架在数学和工程问题中的应用 II
  • 批准号:
    1307685
  • 财政年份:
    2013
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了