Frame Phase-Retrievability and Applications to Quantum Information

帧相位可恢复性及其在量子信息中的应用

基本信息

项目摘要

Frames provide desirable mathematical representations for signals and information, and consequently play an important role in developing approaches to many challenging questions in science and in engineering applications. Frames have natural connections with the mathematical theory of quantum communications. For example, phase-retrievability of a frame is an important property that allows the recovery of a signal from the magnitudes of its frame coefficient measurements. This appears in many applications including speech recognition, x-ray crystallography and electron microscopy. In quantum information theory, this is a necessary property for a quantum system to have to distinguish pure states from their quantum measurements. This project addresses several fundamental issues in the area. The principal investigator (PI) will investigate frame applications to problems involving quantum communication capability and information transmission security. By bringing a new circle of ideas to attack these practical problems, this investigation will advance scientific understanding in quantum information theory as well as in applied functional/harmonic analysis. Additionally, this project will promote teaching, training, and learning as several graduate and undergraduate students will be directly involved in this research project.One direction of this investigation is to establish quantified measurements of (mostly, operator-valued) frame phase-retrievability, and then use them to tackle problems of designing (or characterizing) quantum communication channels with prescribed levels of zero-error communication capacity and information transmission security. Special attention will be given to the structured channels, which are usually induced by different kinds of representation frames. Here, the interplay between operator-valued frames and projective group representations will play a key role. A second direction of this project is in the area of signal/state recovering (or channel detection) from a source of unidentified channels. The PI will establish its theoretical connections with the theory of disjoint frames and quantum channels. A key ingredient is to use disjoint frames as building blocks to produce a large class of candidates, where any subclass of this set can be used as a source of unidentified channels for a target set of signals or states in the quantum setting. Such an approach requires developing a disjoint frame theory (or multiplexing) for bounded linear maps on von Neumann algebras. A third direction involves quantum measures. Dilation problems for quantum measures are not only in the scope of aforementioned areas of investigation but also in line with the PI’s long-term goal of establishing a general dilation theory for operator-valued measures in both commutative and non-commutative settings. Such a general dilation theory may lead to a possible classification theory for quantum measures as well as for their associated quantum channels. The main objective is to establish a dilation theory for quantum measures that can tell us which, when, and how certain important information of a quantum measure can be preserved through dilations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
框架为信号和信息提供了理想的数学表示,因此在开发科学和工程应用中许多具有挑战性的问题的方法方面发挥了重要作用。框架与量子通信的数学理论有着天然的联系。例如,帧的相位可恢复性是允许从其帧系数测量的幅度恢复信号的重要属性。这出现在许多应用中,包括语音识别,x射线晶体学和电子显微镜。在量子信息理论中,这是量子系统必须区分纯态和它们的量子测量的必要属性。该项目涉及该领域的几个基本问题。首席研究员(PI)将研究框架应用于涉及量子通信能力和信息传输安全的问题。通过带来一个新的思想来攻击这些实际问题,这项调查将推进量子信息理论以及应用泛函/调和分析的科学理解。此外,本项目将促进教学,培训和学习,因为一些研究生和本科生将直接参与本研究项目。(主要是运营商价值)帧相位可恢复性,然后用它们来解决设计问题,(或表征)量子通信信道具有规定水平的零差错通信容量和信息传输安全性。特别注意的是结构化通道,这通常是由不同类型的表征框架。在这里,算子值框架和投射群表示之间的相互作用将发挥关键作用。这个项目的第二个方向是在信号/状态恢复(或通道检测)从一个来源的未识别的通道。PI将与不相交框架和量子通道理论建立理论联系。一个关键因素是使用不相交的框架作为构建块来产生一个大类的候选者,其中该集合的任何子类都可以用作量子设置中的目标信号或状态集合的未识别通道的来源。这种方法需要发展一个不相交框架理论(或复用)的有界线性映射冯诺依曼代数。第三个方向涉及量子测量。量子测度的膨胀问题不仅在上述研究领域的范围内,而且也符合PI的长期目标,即在交换和非交换环境中为算子值测度建立一个通用的膨胀理论。这样一个一般的膨胀理论可能会导致一个可能的分类理论的量子措施,以及其相关的量子通道。主要目的是建立量子测度的膨胀理论,告诉我们量子测度的哪些、何时以及如何通过膨胀来保存某些重要信息。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generalized Choi-Kraus dilations of linear maps between matrix algebras
  • DOI:
    10.7153/oam-2022-16-79
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Degu ng Han;Qianf ng Hu;Rui Liu
  • 通讯作者:
    Degu ng Han;Qianf ng Hu;Rui Liu
Orbit-injective Covariant Quantum Channels
  • DOI:
    10.1016/j.laa.2023.03.018
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Kai Liu;Chuangxun Cheng;D. Han
  • 通讯作者:
    Kai Liu;Chuangxun Cheng;D. Han
Quantum injectivity of multi-window Gabor frames in finite dimensions
  • DOI:
    10.1007/s43034-022-00208-2
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    1
  • 作者:
    D. Han;Qianfeng Hu;Rui Liu;Heying Wang
  • 通讯作者:
    D. Han;Qianfeng Hu;Rui Liu;Heying Wang
FROG-measurement based phase retrieval for analytic signals
  • DOI:
    10.1016/j.acha.2021.05.005
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Youfa Li;Yaoshuai Ma;D. Han
  • 通讯作者:
    Youfa Li;Yaoshuai Ma;D. Han
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Deguang Han其他文献

The correlation numerical range of a matrix and Connes’ embedding problem
  • DOI:
    10.1016/j.laa.2011.10.017
  • 发表时间:
    2012-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Don Hadwin;Deguang Han
  • 通讯作者:
    Deguang Han
OnM-ideals and best approximation
Functional Matrix Multipliers for Parseval Gabor Multi-frame Generators
Parseval Gabor 多帧生成器的函数矩阵乘法器
  • DOI:
    10.1007/s10440-018-0194-x
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Zhongyan Li;Deguang Han
  • 通讯作者:
    Deguang Han
On twisted group frames
  • DOI:
    https://doi.org/10.1016/j.laa.2018.11.034
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
  • 作者:
    Chuangxun Cheng;Deguang Han
  • 通讯作者:
    Deguang Han
Frame vector multipliers for finite group representations
有限群表示的帧向量乘法器

Deguang Han的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Deguang Han', 18)}}的其他基金

Representation Frames and Applications
表示框架和应用
  • 批准号:
    1712602
  • 财政年份:
    2017
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Frame-Based Kernel Analysis and Algorithms for Fast Recovery of Erasures and Multiplexing
用于快速恢复擦除和复用的基于帧的内核分析和算法
  • 批准号:
    1403400
  • 财政年份:
    2014
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Optimal and Structured Frames with Applications
最佳结构化框架及应用
  • 批准号:
    1106934
  • 财政年份:
    2011
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference Support: Operator Theory/Operator Algebras, GPOTS 05-06; University of Central Florida, June 2005; University of Iowa, May 2006
协作研究:会议支持:算子理论/算子代数,GPOTS 05-06;
  • 批准号:
    0504004
  • 财政年份:
    2005
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant

相似国自然基金

Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark Supercooled Phase Transition
  • 批准号:
    24ZR1429700
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ATLAS实验探测器Phase 2升级
  • 批准号:
    11961141014
  • 批准年份:
    2019
  • 资助金额:
    3350 万元
  • 项目类别:
    国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
  • 批准号:
    41802035
  • 批准年份:
    2018
  • 资助金额:
    12.0 万元
  • 项目类别:
    青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
  • 批准号:
    61675216
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于Phase-type分布的多状态系统可靠性模型研究
  • 批准号:
    71501183
  • 批准年份:
    2015
  • 资助金额:
    17.4 万元
  • 项目类别:
    青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
  • 批准号:
    51201142
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
  • 批准号:
    11101428
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
  • 批准号:
    19374069
  • 批准年份:
    1993
  • 资助金额:
    6.4 万元
  • 项目类别:
    面上项目

相似海外基金

UK involvement in LSST: Phase C (Imperial component)
英国参与 LSST:C 阶段(帝国部分)
  • 批准号:
    ST/X001326/1
  • 财政年份:
    2025
  • 资助金额:
    $ 23万
  • 项目类别:
    Research Grant
Phase 2 - Effective and Integrated Chemical Free Robotic Milking
第 2 阶段 - 有效且集成的无化学品机器人挤奶
  • 批准号:
    10093094
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Collaborative R&D
Net Zero Pathfinder - Phase 2 Manchester
净零探路者 - 第二阶段曼彻斯特
  • 批准号:
    10095254
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Demonstrator
Phase Averaged Deferred Correction for Multi-Timescale Systems
多时间尺度系统的相位平均延迟校正
  • 批准号:
    EP/Y032624/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Research Grant
Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
  • 批准号:
    EP/Y002474/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Research Grant
IUCRC Phase I University of Wisconsin-Milwaukee: Center for Concrete Advancement Network (CAN), Lead Site
IUCRC 第一阶段威斯康星大学密尔沃基分校:混凝土进步网络中心 (CAN),主要站点
  • 批准号:
    2310861
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
IUCRC Phase III University of Colorado Boulder: Center for Membrane Applications, Science and Technology (MAST)
IUCRC 第三阶段科罗拉多大学博尔德分校:膜应用、科学与技术中心 (MAST)
  • 批准号:
    2310937
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
SBIR Phase II: Innovative Two-Phase Cooling with Micro Closed Loop Pulsating Heat Pipes for High Power Density Electronics
SBIR 第二阶段:用于高功率密度电子产品的创新两相冷却微闭环脉动热管
  • 批准号:
    2321862
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Cooperative Agreement
SBIR Phase I: Industrial-Scale Technology for Drug Development in Mature Human Fat Cells
SBIR 第一阶段:成熟人类脂肪细胞药物开发的工业规模技术
  • 批准号:
    2322443
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
STTR Phase II: Fabrication and Structural Testing of a 3D Concrete Printed Anchor for Floating Offshore Wind
STTR 第二阶段:用于浮动海上风电的 3D 混凝土打印锚的制造和结构测试
  • 批准号:
    2333306
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了