Discovering What Matters: Informative and Reproducible Variable Selection with Applications to Genomics

发现重要的事情:信息丰富且可重复的变量选择及其在基因组学中的应用

基本信息

  • 批准号:
    1712800
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

This project will develop statistical methods to discover which variables, in a large collection, are meaningfully related to an outcome of interest. An example of the problem is the identification of which genetic variants, among the millions we measure, influence disease risk. The methods developed will allow analysis of all variables at the same time, accounting for their interdependence, and leading to the identification of "actionable" ones. The approaches put forward come with the guarantee that, on average, a large fraction of the discovered features truly influence the outcome. The ability to correctly identify important variables will increase knowledge in many domains, and allow experts to devise interventions. For example, understanding which of the variables recorded on a patient are more relevant with respect to his/her response to therapy, can help develop personalized medical interventions with a higher success rate.The methods developed will enlarge the tool-box available to statisticians and data scientists as they attempt to extract meaningful information from datasets comprising a very large number of variables. The approach builds on the "knock-off" framework, a very flexible and novel approach that does not require specifying a model for the relation between an outcome of interest and possible co-variates. The inferential guarantees provided are on the selected variables, with control of the False Discovery Rate (FDR), where a discovery is considered false if a selected variable is independent of the outcome given the remaining covariates. This provides assurance on the reproducibility of results, as well as on their interpretability. The approaches developed will be used to analyze genetics datasets with the goal of obtaining more complete models of how DNA variation influences medically relevant phenotypes. This project is supported by the Division of Mathematical Sciences and the Division of Molecular and Cellular Biosciences.
该项目将开发统计方法,以发现在大量集合中哪些变量与感兴趣的结果有意义相关。这个问题的一个例子是,在我们测量的数百万种基因变异中,确定哪些基因变异会影响疾病风险。所制定的方法将允许同时分析所有变量,说明它们的相互依存关系,并导致确定“可采取行动”的变量。所提出的方法保证,平均而言,发现的大部分特征确实会影响结果。正确识别重要变量的能力将增加许多领域的知识,并使专家能够设计干预措施。例如,了解记录在患者身上的变量中哪些与他/她对治疗的反应更相关,可以帮助制定具有更高成功率的个性化医疗干预措施。开发的方法将扩大统计学家和数据科学家可用的工具箱,因为他们试图从包含大量变量的数据集中提取有意义的信息。该方法建立在“仿制”框架之上,这是一种非常灵活和新颖的方法,不需要为感兴趣的结果与可能的协变量之间的关系指定模型。所提供的推理保证是针对所选变量的,并控制错误发现率(FDR),如果所选变量独立于给定剩余协变量的结果,则认为发现是错误的。这保证了结果的可重复性和可解释性。所开发的方法将用于分析遗传学数据集,目的是获得DNA变异如何影响医学相关表型的更完整模型。该项目由数学科学部和分子与细胞生物科学部支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rejoinder: ‘Gene hunting with hidden Markov model knockoffs’
  • DOI:
    10.1093/biomet/asy075
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Matteo Sesia;C. Sabatti;E. Candès
  • 通讯作者:
    Matteo Sesia;C. Sabatti;E. Candès
Multi-resolution localization of causal variants across the genome
  • DOI:
    10.1038/s41467-020-14791-2
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Matteo Sesia;E. Katsevich;Stephen Bates;E. Candès;C. Sabatti
  • 通讯作者:
    Matteo Sesia;E. Katsevich;Stephen Bates;E. Candès;C. Sabatti
ROBUST INFERENCE WITH KNOCKOFFS
  • DOI:
    10.1214/19-aos1852
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Barber, Rina Foygel;Candes, Emmanuel J.;Samworth, Richard J.
  • 通讯作者:
    Samworth, Richard J.
On the construction of knockoffs in case–control studies
  • DOI:
    10.1002/sta4.225
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    R. Barber;E. Candès
  • 通讯作者:
    R. Barber;E. Candès
MULTILAYER KNOCKOFF FILTER: CONTROLLED VARIABLE SELECTION AT MULTIPLE RESOLUTIONS
  • DOI:
    10.1214/18-aoas1185
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Katsevich, Eugene;Sabatti, Chiara
  • 通讯作者:
    Sabatti, Chiara
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chiara Sabatti其他文献

models for inferring Copy Number Variations from genotype data
从基因型数据推断拷贝数变异的模型
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hui Wang;Jan H. Veldink;Roel Opoff;Chiara Sabatti
  • 通讯作者:
    Chiara Sabatti
Geospatial analysis reveals distinct hotspots of severe mental illness
地理空间分析揭示了严重精神疾病的明显热点
  • DOI:
    10.1101/2022.03.23.22272776
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Janet Song;Mauricio Castano Ramírez;Justin T. Okano;K. Susan;Service;J. D. L. Hoz;Ana M. Díaz;Cristian Vargas;Upegui;Cristian Gallago;Alejandro Arias;Alexandra Valderrama;Sánchez;T. Teshiba;Chiara Sabatti;Ruben C Gur;E. Carrie;Bearden;Javier I. Escobar;Victor I. Reus;Carlos López Jaramillo;N. Freimer;L. M. Loohuis;Sally Blower
  • 通讯作者:
    Sally Blower
MP39-10 INTRA-TUMOR HETEROGENEITY IN RENAL CELL CARCINOMA: IMPLICATIONS FOR PROTEOMIC ANALYSIS OF RENAL MASS BIOPSIES
  • DOI:
    10.1016/j.juro.2017.02.1184
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rustin Massoudi;Christian Hoerner;Thomas Metzner;Jennifer O'Rourke;Rachael Curtis;Laurel Stell;Chiara Sabatti;James Brooks;Alice Fan;John Leppert
  • 通讯作者:
    John Leppert
GENETICS OF SEVERE MENTAL ILLNESS IN SOUTH AMERICA
  • DOI:
    10.1016/j.euroneuro.2022.07.057
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Loes Olde Loohuis;Ana Díaz-Zuluaga;Susan Service;Juan De la Hoz;Sintia Belangero;Johanna Valencia;Terri Teshiba;Marcos Santoro;Javier Escobar;Roel Ophoff;Victor Reus;Chiara Sabatti;Ary Gadelha;Carlos Lopez-Jaramillo;Nelson Freimer
  • 通讯作者:
    Nelson Freimer
Variants in common diseases
常见疾病的变异
  • DOI:
    10.1038/nature05568
  • 发表时间:
    2007-02-11
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Nelson B. Freimer;Chiara Sabatti
  • 通讯作者:
    Chiara Sabatti

Chiara Sabatti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chiara Sabatti', 18)}}的其他基金

Scientific Findings across Multiple Environments: Replication, Robustness, and Equity in Genetic Association Studies
跨多个环境的科学发现:遗传关联研究的复制性、稳健性和公平性
  • 批准号:
    2210392
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
CAREER: Statistical and Computational Tools for the Analysis of High Dimensional Genetic Data
职业:用于分析高维遗传数据的统计和计算工具
  • 批准号:
    0239427
  • 财政年份:
    2003
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant

相似国自然基金

视觉背侧(where)和腹侧(what)通路改变与针刺干预弱视的rs-fMRI机制研究
  • 批准号:
    82160935
  • 批准年份:
    2021
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Size matters, but at what cost? Role of male sex hormones in the placenta
规模很重要,但代价是什么?
  • 批准号:
    DP240102256
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Discovery Projects
MERGE - Measuring what matters: Improving usability and accessibility of policy frameworks and indicators for multidimensional well-being through collaboration
MERGE - 衡量重要的事情:通过协作提高多维福祉政策框架和指标的可用性和可及性
  • 批准号:
    10092245
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    EU-Funded
EUonQoL: Quality of Life in Oncology: measuring what matters for cancer patients and survivors in Europe
EUonQoL:肿瘤学生活质量:衡量欧洲癌症患者和幸存者的重要因素
  • 批准号:
    10057589
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    EU-Funded
What matters most? Understanding the experiences of persons affected by pressure injuries. A knowledge creation and consensus building activity
什么最重要?
  • 批准号:
    487933
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Miscellaneous Programs
EUonQoL: Quality of Life in Oncology: measuring what matters for cancer patients and survivors in Europe
EUonQoL:肿瘤学生活质量:衡量欧洲癌症患者和幸存者的重要因素
  • 批准号:
    10063724
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    EU-Funded
eAlign: A Patient Portal-based Intervention to Align Medications with What Matters Most
eAlign:基于患者门户的干预措施,使药物与最重要的事情保持一致
  • 批准号:
    10673118
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
Understanding What Matters: Developing effective participatory methods from the research into what matters to children living in kinship care.
了解重要的事情:通过研究对生活在亲属照料中的儿童来说重要的事情,制定有效的参与方法。
  • 批准号:
    ES/X006964/1
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Fellowship
Alagille Syndrome Scientific Meeting - Measuring What Matters
阿拉吉尔综合症科学会议 - 衡量重要的事情
  • 批准号:
    10469076
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
What matters to you(th) preparing for adult health care: A mixed-methods approach to improving readiness assessments
为成人医疗保健做准备对您来说最重要的是:改进准备评估的混合方法
  • 批准号:
    486190
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Studentship Programs
eAlign: A Patient Portal-based Intervention to Align Medications with What Matters Most
eAlign:基于患者门户的干预措施,使药物与最重要的事情保持一致
  • 批准号:
    10435719
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了