CAREER: Statistical and Computational Tools for the Analysis of High Dimensional Genetic Data
职业:用于分析高维遗传数据的统计和计算工具
基本信息
- 批准号:0239427
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-06-01 至 2008-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal ID: DMS-0239427PI: Chiara SabattiTitle: CAREER: Statistical and computational tools for the analysis of high dimensional genetic dataAbstractThis project will enable the creation of novel statistical models and computational tools for the analysis of data in high dimensional spaces, as the one generated in the field of genetics. In particular the investigator and her colleagues will (a) develop models for genomic sequences that aim at establishing the total number of binding sites, their location and their interaction with each other; (b) pursue de-noising of gene array data, modeling of the dependence between the expression of various genes, and the identification of the number of different chemical signals originating change in expression; (c) model the notion of ``haplotype blocks'' and define the procedures to identify them with the purpose of gene mapping, and develop appropriate procedures of correction for multiple comparison in the same context. The project illustrates relations between the topics of model selection, multiple comparison, high-dimensional function estimation and leads to deeper understanding of connections between Bayesian models, minimum description length principle, and false discovery rates. The proposed research will additionally develop a new set of computational tools that are based on Markov Chain Monte Carlo sampling and representation of the objective distribution on a variety of different scales. The outlined research helps to tackle some fundamental questions regarding the role and the expression of genes, thus leading to improvements of the general welfare, trough the discovery of genes related to diseases, the development of genetic therapies, and the engineering of the over-production of protein of interests on industrial scale. By making the algorithms for genome and gene expression analysis publicly available, and upgrading the computing infrastructure, the project broadens the participation to scientific investigation of under-served community and enhance the general infrastructure for research. The proposed organization of interdisciplinary workshops, research activities and courses assures a broad dissemination of the results to enhance scientific understanding. The organizations of seminars on teaching statistics in interdisciplinary settings for high-school and college instructors goes in the direction of integrating research and education, promoting teaching, training, and learning.
提案ID:DMS-0239427 PI:Chiara Sabati标题:CAREER:高维遗传数据分析的统计和计算工具摘要该项目将使新的统计模型和计算工具的创建成为可能,用于分析高维空间中的数据,如遗传学领域中产生的数据。 特别是,研究者和她的同事将(a)开发基因组序列模型,旨在建立结合位点的总数、它们的位置和它们之间的相互作用;(B)对基因阵列数据进行去噪,对各种基因表达之间的依赖性建模,并识别引起表达变化的不同化学信号的数量;(c)建立“单元型区块”概念的模型,并确定为基因图谱目的确定单元型区块的程序,并为同一背景下的多重比较制定适当的校正程序。该项目说明了模型选择,多重比较,高维函数估计等主题之间的关系,并加深了对贝叶斯模型,最小描述长度原则和错误发现率之间联系的理解。拟议的研究还将开发一套新的计算工具,这些工具基于马尔可夫链蒙特卡罗抽样和各种不同尺度上的目标分布表示。概述的研究有助于解决有关基因的作用和表达的一些基本问题,从而通过发现与疾病有关的基因,开发遗传疗法以及在工业规模上对感兴趣的蛋白质的过度生产进行工程设计,从而改善公众福利。通过公开基因组和基因表达分析的算法,并升级计算基础设施,该项目扩大了对服务不足社区的科学调查的参与,并加强了研究的一般基础设施。拟议组织的跨学科讲习班、研究活动和课程可确保广泛传播成果,以增进科学认识。为高中和大学教师举办跨学科统计教学研讨会,是为了将研究与教育结合起来,促进教学、培训和学习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chiara Sabatti其他文献
models for inferring Copy Number Variations from genotype data
从基因型数据推断拷贝数变异的模型
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Hui Wang;Jan H. Veldink;Roel Opoff;Chiara Sabatti - 通讯作者:
Chiara Sabatti
Geospatial analysis reveals distinct hotspots of severe mental illness
地理空间分析揭示了严重精神疾病的明显热点
- DOI:
10.1101/2022.03.23.22272776 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Janet Song;Mauricio Castano Ramírez;Justin T. Okano;K. Susan;Service;J. D. L. Hoz;Ana M. Díaz;Cristian Vargas;Upegui;Cristian Gallago;Alejandro Arias;Alexandra Valderrama;Sánchez;T. Teshiba;Chiara Sabatti;Ruben C Gur;E. Carrie;Bearden;Javier I. Escobar;Victor I. Reus;Carlos López Jaramillo;N. Freimer;L. M. Loohuis;Sally Blower - 通讯作者:
Sally Blower
MP39-10 INTRA-TUMOR HETEROGENEITY IN RENAL CELL CARCINOMA: IMPLICATIONS FOR PROTEOMIC ANALYSIS OF RENAL MASS BIOPSIES
- DOI:
10.1016/j.juro.2017.02.1184 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Rustin Massoudi;Christian Hoerner;Thomas Metzner;Jennifer O'Rourke;Rachael Curtis;Laurel Stell;Chiara Sabatti;James Brooks;Alice Fan;John Leppert - 通讯作者:
John Leppert
GENETICS OF SEVERE MENTAL ILLNESS IN SOUTH AMERICA
- DOI:
10.1016/j.euroneuro.2022.07.057 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:
- 作者:
Loes Olde Loohuis;Ana Díaz-Zuluaga;Susan Service;Juan De la Hoz;Sintia Belangero;Johanna Valencia;Terri Teshiba;Marcos Santoro;Javier Escobar;Roel Ophoff;Victor Reus;Chiara Sabatti;Ary Gadelha;Carlos Lopez-Jaramillo;Nelson Freimer - 通讯作者:
Nelson Freimer
Variants in common diseases
常见疾病的变异
- DOI:
10.1038/nature05568 - 发表时间:
2007-02-11 - 期刊:
- 影响因子:48.500
- 作者:
Nelson B. Freimer;Chiara Sabatti - 通讯作者:
Chiara Sabatti
Chiara Sabatti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chiara Sabatti', 18)}}的其他基金
Scientific Findings across Multiple Environments: Replication, Robustness, and Equity in Genetic Association Studies
跨多个环境的科学发现:遗传关联研究的复制性、稳健性和公平性
- 批准号:
2210392 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Discovering What Matters: Informative and Reproducible Variable Selection with Applications to Genomics
发现重要的事情:信息丰富且可重复的变量选择及其在基因组学中的应用
- 批准号:
1712800 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
- 批准号:
2347177 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
- 批准号:
2242084 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
- 批准号:
2242085 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Advances in Statistical and Computational Methods for Analysis of Biomedical, Genetic, and Omics Data
会议:生物医学、遗传和组学数据分析的统计和计算方法的进展
- 批准号:
2232547 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
New statistical and computational tools for optimization of planarian behavioral chemical screens
用于优化涡虫行为化学筛选的新统计和计算工具
- 批准号:
10658688 - 财政年份:2023
- 资助金额:
-- - 项目类别:
CORE 1/2: INIA Stress and Chronic Alcohol Interactions: Computational and Statistical Analysis Core (CSAC)
CORE 1/2:INIA 压力和慢性酒精相互作用:计算和统计分析核心 (CSAC)
- 批准号:
10411629 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Statistical Methods and Computational Tools for Marine Animal Movement, Distribution and Population Size
海洋动物运动、分布和种群规模的统计方法和计算工具
- 批准号:
RGPIN-2019-05688 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Developing computational, statistical and machine learning methods to uncover biological mechanisms of complex phenotypes
开发计算、统计和机器学习方法来揭示复杂表型的生物学机制
- 批准号:
RGPIN-2021-04062 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Statistical and Computational Tools for Analyzing High-Dimensional Heterogeneous Data
用于分析高维异构数据的统计和计算工具
- 批准号:
2210907 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Bridging Statistical Hypothesis Tests and Deep Learning for Reliability and Computational Efficiency
连接统计假设检验和深度学习以提高可靠性和计算效率
- 批准号:
2134037 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant