High Dimensional Mediation Analysis with Multi-Omics Data

多组学数据的高维中介分析

基本信息

项目摘要

Rapid development of various high-throughput biological technologies has revolutionized the field of genomics. Various genomic studies produce molecular-level traits by measuring gene expression levels and characterizing various covalent modifications of DNA and histone proteins. The measured molecular-level traits, including gene expression and methylation levels, are thought to mediate the effects of DNA and/or the environment on many traits and diseases, and hold the key to understanding the genetic and environmental basis of disease susceptibility and phenotypic variation. In particular, these high-dimensional biomarkers absorb and reflect environmental insults to the genome and serve as measures of an individual's internal molecular and cellular environment that change dynamically over the time course of life. In this project, statistical methods will be developed to perform high-dimensional mediation analysis, in order to further our understanding of the molecular basis of disease susceptibility and phenotypic variation, and facilitate the integrative analysis of various molecular-level traits from omics studies. The proposed statistical methods will be used to study how the inherited DNA environment and the external environment, as measured through environmental toxicants, socioeconomic conditions, neighborhood characteristics, psychosocial stress and other life events, influence omics measures of the internal environment, and in turn lead to adverse health outcomes. Technically, the molecular-level traits from omics studies will be treated as a multivariate set of high-dimensional mediators for integrative analysis. A novel high-dimensional mediation analysis framework will be developed to handle multiple exposures and multiple mediators simultaneously. The proposed high-dimensional mediation analysis methods will extend existing mediation analysis methods from handling univariate mediator and/or univariate exposure to a high-dimensional setting by making additional modeling assumptions on the effects of mediators and exposures to enable model identifiability. While the problem is formulated in a causal inference framework, inference will be conducted using a Bayesian variable selection framework that identifies important exposures and mediators simultaneously. The research combines ideas from variance component score tests, Bayesian variable selection, and causal inference in a unified manner to lead to new theoretical insights on estimation of direct and indirect effects. Methodological extensions will also be made to conduct mediation analysis based on sharing summary statistics that are becoming increasingly common in genetics studies. The newly developed methods will be applied to large ongoing cohort/case-control studies, and software will be developed for scalable implementation of the proposed methods.
各种高通量生物技术的快速发展彻底改变了基因组学领域。各种基因组研究通过测量基因表达水平并表征 DNA 和组蛋白的各种共价修饰来产生分子水平的性状。测量的分子水平性状,包括基因表达和甲基化水平,被认为介导DNA和/或环境对许多性状和疾病的影响,并且是了解疾病易感性和表型变异的遗传和环境基础的关键。特别是,这些高维生物标志物吸收并反映环境对基因组的损害,并作为个体内部分子和细胞环境的测量,这些环境随生命过程动态变化。 本项目将开发统计方法进行高维中介分析,以进一步了解疾病易感性和表型变异的分子基础,并促进组学研究中各种分子水平性状的综合分析。所提出的统计方法将用于研究遗传DNA环境和外部环境(通过环境毒物、社会经济条件、邻里特征、社会心理压力和其他生活事件来衡量)如何影响内部环境的组学测量,进而导致不良的健康结果。从技术上讲,组学研究的分子水平特征将被视为一组多元的高维中介因素,用于综合分析。将开发一种新颖的高维中介分析框架来同时处理多个暴露和多个中介。所提出的高维中介分析方法将通过对中介和暴露的影响进行额外的建模假设来扩展现有的中介分析方法,从处理单变量中介和/或单变量暴露到高维设置,以实现模型可识别性。虽然问题是在因果推理框架中提出的,但推理将使用贝叶斯变量选择框架来进行,该框架同时识别重要的暴露和中介。该研究以统一的方式结合了方差成分评分测试、贝叶斯变量选择和因果推理的思想,从而得出了直接和间接影响估计的新理论见解。方法论也将得到扩展,以基于共享汇总统计数据进行中介分析,这在遗传学研究中变得越来越普遍。新开发的方法将应用于大型正在进行的队列/病例对照研究,并将开发软件以扩展实施所提出的方法。

项目成果

期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Does Information on Blood Heavy Metals Improve Cardiovascular Mortality Prediction?
A Review of Statistical Methods for Identifying Trait-Relevant Tissues and Cell Types.
  • DOI:
    10.3389/fgene.2020.587887
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Zhu H;Shang L;Zhou X
  • 通讯作者:
    Zhou X
Interaction analysis under misspecification of main effects: Some common mistakes and simple solutions.
主效应错误指定下的交互分析:一些常见错误和简单的解决方案。
  • DOI:
    10.1002/sim.8505
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Zhang,Min;Yu,Youfei;Wang,Shikun;Salvatore,Maxwell;GFritsche,Lars;He,Zihuai;Mukherjee,Bhramar
  • 通讯作者:
    Mukherjee,Bhramar
Group Inverse-Gamma Gamma Shrinkage for Sparse Linear Models with Block-Correlated Regressors
  • DOI:
    10.1214/23-ba1371
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Boss,Jonathan;Datta,Jyotishka;Mukherjee,Bhramar
  • 通讯作者:
    Mukherjee,Bhramar
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bhramar Mukherjee其他文献

Addressing extrema and censoring in pollutant and exposure data using mixture of normal distributions
  • DOI:
    10.1016/j.atmosenv.2013.05.004
  • 发表时间:
    2013-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shi Li;Stuart Batterman;Feng-Chiao Su;Bhramar Mukherjee
  • 通讯作者:
    Bhramar Mukherjee
Correction: Central IKKβ Inhibition prevents air pollution mediated peripheral inflammation and exaggeration of type II diabetes
  • DOI:
    10.1186/s12989-025-00630-z
  • 发表时间:
    2025-05-20
  • 期刊:
  • 影响因子:
    8.200
  • 作者:
    Cuiqing Liu;Laura K Fonken;Aixia Wang;Andrei Maiseyeu;Yuntao Bai;Tse-Yao Wang;Santosh Maurya;Yi-An Ko;Muthu Periasamy;Timothy Dvonch;Masako Morishita;Robert D Brook;Jack Harkema;Zhekang Ying;Bhramar Mukherjee;Qinghua Sun;Randy J Nelson;Sanjay Rajagopalan
  • 通讯作者:
    Sanjay Rajagopalan
CONTEXTUALLY TAILORED TEXT MESSAGES TO AUGMENT CARDIAC REHABILITATION: THE VIRTUAL APPLICATION-SUPPORTED ENVIRONMENT TO INCREASE EXERCISE (VALENTINE) STUDY
  • DOI:
    10.1016/j.cvdhj.2023.08.010
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kashvi Gupta;Jieru Shi;Walter Dempsey;Bhramar Mukherjee;Sachin Kheterpal;Predrag Klasnja;Brahmajee K. Nallamothu;Jessica Golbus
  • 通讯作者:
    Jessica Golbus
Endogenous sex steroid hormones and glucose in a South‐Asian population without diabetes: the Metabolic Syndrome and Atherosclerosis in South‐Asians Living in America pilot study
无糖尿病的南亚人群中的内源性类固醇激素和葡萄糖:生活在美国的南亚人的代谢综合征和动脉粥样硬化试点研究
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Belinda L Needham;Catherine Kim;Bhramar Mukherjee;P. Bagchi;F. Z. Stanczyk;A. Kanaya
  • 通讯作者:
    A. Kanaya
Prenatal exposure to phthalate mixtures and child neurodevelopment in toddlers aged 1–3 years from the PROTECT birth cohort
来自PROTECT出生队列的1 - 3岁幼儿产前邻苯二甲酸酯混合物暴露与儿童神经发育情况
  • DOI:
    10.1016/j.ijheh.2025.114599
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    4.400
  • 作者:
    Seonyoung Park;Amber L. Cathey;Wei Hao;Sung Kyun Park;Bhramar Mukherjee;Gredia Huerta Montañez;Zaira Y. Rosario Pabón;Carmen M. Vélez Vega;José F. Cordero;Akram Alshawabkeh;Deborah J. Watkins;John D. Meeker
  • 通讯作者:
    John D. Meeker

Bhramar Mukherjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bhramar Mukherjee', 18)}}的其他基金

An Undergraduate Workshop on "Big Data, Human Health and Statistics"
“大数据、人类健康与统计学”本科生研讨会
  • 批准号:
    1541233
  • 财政年份:
    2015
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Set based tests for genetic association and gene-environment interaction in longitudinal studies
纵向研究中遗传关联和基因-环境相互作用的基于集合的测试
  • 批准号:
    1406712
  • 财政年份:
    2014
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Case-Control Studies, New Directions and Applications
合作研究:病例对照研究、新方向和应用
  • 批准号:
    1007494
  • 财政年份:
    2010
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Bayesian Analysis for Studies of Gene-Environment Interaction
基因-环境相互作用研究的贝叶斯分析
  • 批准号:
    0706935
  • 财政年份:
    2007
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Complex Causal Moderated Mediation Analysis in Multisite Randomized Trials: Uncovering the Black Box Underlying the Impact of Educational Interventions on Math Performance
职业:多地点随机试验中的复杂因果调节中介分析:揭示教育干预对数学成绩影响的黑匣子
  • 批准号:
    2337612
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
How do mental and physical health problems contribute to inequalities in persistent school absence? A causal mediation analysis using ECHILD
精神和身体健康问题如何导致持续缺课带来的不平等?
  • 批准号:
    ES/Z502509/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Fellowship
Meta-Analysis of the Instructional-Relational Model of Student Engagement and Math Achievement: A Moderation and Mediation Approach
学生参与度和数学成绩的教学关系模型的元分析:一种调节和中介方法
  • 批准号:
    2300738
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Effect of stage at diagnosis, treatment, and physical comorbidities on mortality following cancer diagnosis among people with non-affective psychotic disorders: A causal mediation analysis
诊断、治疗和身体合并症的分期对非情感性精神障碍患者癌症诊断后死亡率的影响:因果中介分析
  • 批准号:
    495238
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
Statistical methods for analysis of high-dimensional mediation pathways
高维中介路径分析的统计方法
  • 批准号:
    10582932
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
Smoking- and drinking-related genetic variants and cancer risk: an across-site mediation analysis
吸烟和饮酒相关的遗传变异和癌症风险:跨站点中介分析
  • 批准号:
    23K16316
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Data harmonization and synthesis for mediation and moderation analysis
用于中介和调节分析的数据协调和综合
  • 批准号:
    RGPIN-2021-03432
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
Causal mediation analysis in mental health with mediator missingness
中介缺失的心理健康因果中介分析
  • 批准号:
    10551202
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
Causal mediation analysis in mental health with mediator missingness
中介缺失的心理健康因果中介分析
  • 批准号:
    10352521
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
Causal mediation analysis methods for polytomous, functional and high-dimensional data
多层次、函数和高维数据的因果中介分析方法
  • 批准号:
    RGPIN-2020-05920
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了