Bayesian Analysis for Studies of Gene-Environment Interaction
基因-环境相互作用研究的贝叶斯分析
基本信息
- 批准号:0706935
- 负责人:
- 金额:$ 13.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT In case-control studies of gene-environment association with disease, when genetic and environmental exposures can be assumed to be independent in the underlying population, one may exploit theindependence assumption in order to derive more efficient estimation techniques than the traditional logistic regression analysis. Many of the classical results for case-control analysis, which assume the covariate distribution to be non-parametric, do not hold under a constrained space of exposure distributions. However, the gain in efficiency of modern retrospective methods comes at the cost of lack of robustness, since large biases are introduced in the retrospective estimates under violation of the gene-environment independence assumption. The main goal of this research proposal is to find natural analytical tools to solve the model specification dilemma of modern retrospective analysis of studies of gene-environment interaction, under some commonly used epidemiological designs. Using the profile-likelihood framework developed by Chatterjee and Carroll (2005, Biometrika), the investigator proposes a Bayesian approach that incorporates uncertainty regarding the assumed constraint of gene-environment independence in a natural data adaptive way. The proposed shrinkage estimator, conceived from a Bayesian standpoint, is designed to maintain attractive efficiency properties, without relying on unverifiable model constraints. Theoretical properties of the proposed estimator are studied under varying scenarios of gene-environment association. The investigator considers both empirical Bayes and hierarchical Bayes methods to relax gene-environment independence assumption. The proposal explores the connection of the Bayesian approaches to an alternative random-effects model. The methods are extended beyond the commonly used unmatched case-control study design to two-phase and family-based studies of gene-environment interaction.Two scientific streams are currently playing extremely important roles in clinical medicine and public health: the molecular biology approach with an emphasis on genetics, and the quantitative approach with an emphasis on epidemiology. The developments in these areas jointly are making fundamental contributions to the study of etiology, diagnosis, prognosis and treatment of complex diseases. Phenomenal advancement of medical science and genetic technology is giving rise to many complex design and analysis issues which statisticians and epidemiologists have never confronted before. This proposal lies in that new interface of human genetics, epidemiology and statistics. Case-control studies are being increasingly used for studying theassociation between a disease and a candidate gene. However, except for some rare diseases, such as Huntington or Tay Sachs disease which may be the result of a deficiency of a single gene product,most common human diseases have a multifactorial etiology involving complex interplay of many genetic and environmental factors. By identifying and characterizing such complicated gene-environment interactions through clinical and epidemiological studies, one has more opportunities to understand the genesis and etiology of complex diseases and to develop targeted intervention strategies for high-risk individuals. The proposal presents robust and efficient statistical techniques to investigate the synergism between gene and environment in studying complex diseases. The high-performance computing tools developed in the proposal makes it feasible to use the methods in large-scale applications such as genome-wide association studies.
摘要 在基因-环境与疾病关联的病例对照研究中,当遗传和环境暴露在潜在人群中可以被假设为独立时,人们可以利用独立性假设来获得比传统的逻辑回归分析更有效的估计技术。许多经典的病例对照分析的结果,假设协变量分布是非参数的,不成立下的曝光分布的约束空间。然而,现代回顾性方法的效率提高是以缺乏鲁棒性为代价的,因为在违反基因-环境独立性假设的情况下,在回顾性估计中引入了大的偏差。本研究提案的主要目标是在一些常用的流行病学设计下,找到自然的分析工具来解决基因与环境相互作用研究的现代回顾性分析的模型规范困境。利用Chatterjee和卡罗尔(2005,Biometrika)开发的轮廓似然框架,研究者提出了一种贝叶斯方法,该方法以自然数据自适应的方式结合了关于基因-环境独立性的假设约束的不确定性。建议的收缩估计,从贝叶斯的角度来看,旨在保持有吸引力的效率属性,而不依赖于无法验证的模型约束。在不同的基因-环境关联的情况下,所提出的估计的理论性质进行了研究。研究者考虑经验贝叶斯和分层贝叶斯方法放松基因-环境独立性假设。该提案探讨了贝叶斯方法与另一种随机效应模型的联系。该方法已超出了常用的不匹配的病例对照研究设计,两个阶段和家庭为基础的研究基因-环境interaction.Two科学流目前在临床医学和公共卫生中发挥着极其重要的作用:分子生物学方法,重点是遗传学,和定量方法,重点是流行病学。这些领域的发展共同为复杂疾病的病因学、诊断、预后和治疗的研究做出了重要贡献。 医学科学和遗传技术的惊人进步正在引起许多统计学家和流行病学家以前从未遇到过的复杂设计和分析问题。 这一建议存在于人类遗传学、流行病学和统计学的新界面中。病例对照研究正越来越多地用于研究疾病与候选基因之间的关联。 然而,除了一些罕见的疾病,如亨廷顿或泰萨克斯病,这可能是一个单一的基因产物的缺陷的结果,大多数常见的人类疾病有一个多因素的病因,涉及许多遗传和环境因素的复杂相互作用。通过临床和流行病学研究来识别和表征这种复杂的基因-环境相互作用,人们有更多的机会了解复杂疾病的起源和病因,并为高危个体制定有针对性的干预策略。该提案提出了强大而有效的统计技术,以研究复杂疾病中基因与环境之间的协同作用。该提案中开发的高性能计算工具使得在全基因组关联研究等大规模应用中使用这些方法变得可行。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bhramar Mukherjee其他文献
Addressing extrema and censoring in pollutant and exposure data using mixture of normal distributions
- DOI:
10.1016/j.atmosenv.2013.05.004 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:
- 作者:
Shi Li;Stuart Batterman;Feng-Chiao Su;Bhramar Mukherjee - 通讯作者:
Bhramar Mukherjee
Correction: Central IKKβ Inhibition prevents air pollution mediated peripheral inflammation and exaggeration of type II diabetes
- DOI:
10.1186/s12989-025-00630-z - 发表时间:
2025-05-20 - 期刊:
- 影响因子:8.200
- 作者:
Cuiqing Liu;Laura K Fonken;Aixia Wang;Andrei Maiseyeu;Yuntao Bai;Tse-Yao Wang;Santosh Maurya;Yi-An Ko;Muthu Periasamy;Timothy Dvonch;Masako Morishita;Robert D Brook;Jack Harkema;Zhekang Ying;Bhramar Mukherjee;Qinghua Sun;Randy J Nelson;Sanjay Rajagopalan - 通讯作者:
Sanjay Rajagopalan
CONTEXTUALLY TAILORED TEXT MESSAGES TO AUGMENT CARDIAC REHABILITATION: THE VIRTUAL APPLICATION-SUPPORTED ENVIRONMENT TO INCREASE EXERCISE (VALENTINE) STUDY
- DOI:
10.1016/j.cvdhj.2023.08.010 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:
- 作者:
Kashvi Gupta;Jieru Shi;Walter Dempsey;Bhramar Mukherjee;Sachin Kheterpal;Predrag Klasnja;Brahmajee K. Nallamothu;Jessica Golbus - 通讯作者:
Jessica Golbus
Endogenous sex steroid hormones and glucose in a South‐Asian population without diabetes: the Metabolic Syndrome and Atherosclerosis in South‐Asians Living in America pilot study
无糖尿病的南亚人群中的内源性类固醇激素和葡萄糖:生活在美国的南亚人的代谢综合征和动脉粥样硬化试点研究
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:3.5
- 作者:
Belinda L Needham;Catherine Kim;Bhramar Mukherjee;P. Bagchi;F. Z. Stanczyk;A. Kanaya - 通讯作者:
A. Kanaya
Prenatal exposure to phthalate mixtures and child neurodevelopment in toddlers aged 1–3 years from the PROTECT birth cohort
来自PROTECT出生队列的1 - 3岁幼儿产前邻苯二甲酸酯混合物暴露与儿童神经发育情况
- DOI:
10.1016/j.ijheh.2025.114599 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:4.400
- 作者:
Seonyoung Park;Amber L. Cathey;Wei Hao;Sung Kyun Park;Bhramar Mukherjee;Gredia Huerta Montañez;Zaira Y. Rosario Pabón;Carmen M. Vélez Vega;José F. Cordero;Akram Alshawabkeh;Deborah J. Watkins;John D. Meeker - 通讯作者:
John D. Meeker
Bhramar Mukherjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bhramar Mukherjee', 18)}}的其他基金
High Dimensional Mediation Analysis with Multi-Omics Data
多组学数据的高维中介分析
- 批准号:
1712933 - 财政年份:2017
- 资助金额:
$ 13.45万 - 项目类别:
Continuing Grant
An Undergraduate Workshop on "Big Data, Human Health and Statistics"
“大数据、人类健康与统计学”本科生研讨会
- 批准号:
1541233 - 财政年份:2015
- 资助金额:
$ 13.45万 - 项目类别:
Standard Grant
Set based tests for genetic association and gene-environment interaction in longitudinal studies
纵向研究中遗传关联和基因-环境相互作用的基于集合的测试
- 批准号:
1406712 - 财政年份:2014
- 资助金额:
$ 13.45万 - 项目类别:
Continuing Grant
Collaborative Research: Case-Control Studies, New Directions and Applications
合作研究:病例对照研究、新方向和应用
- 批准号:
1007494 - 财政年份:2010
- 资助金额:
$ 13.45万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
- 批准号:
2339353 - 财政年份:2024
- 资助金额:
$ 13.45万 - 项目类别:
Continuing Grant
MISTRAL a toolkit for dynaMic health Impact analysiS to predicT disability-Related costs in the Aging population based on three case studies of steeL-industry exposed areas in Europe
MISTRAL 动态健康影响分析工具包,基于欧洲钢铁行业暴露地区的三个案例研究,预测老龄化人口中与残疾相关的成本
- 批准号:
10063764 - 财政年份:2023
- 资助金额:
$ 13.45万 - 项目类别:
EU-Funded
Systematic Reviews and Meta-Analysis of Prognosis Studies (REVAMP): development of core methods, reporting guidelines and a methodology handbook
预后研究的系统评价和荟萃分析 (REVAMP):制定核心方法、报告指南和方法手册
- 批准号:
MR/V038168/2 - 财政年份:2023
- 资助金额:
$ 13.45万 - 项目类别:
Research Grant
Exploratory Analysis Tools for Developmental Studies of Brain Microstructure with Diffusion MRI
利用扩散 MRI 进行脑微结构发育研究的探索性分析工具
- 批准号:
10645844 - 财政年份:2023
- 资助金额:
$ 13.45万 - 项目类别:
III: Small: RUI: Designing Structure-Phenotype Query-Retrieval and Analysis Systems for Microscopy-Based Whole Organism Studies
III:小:RUI:为基于显微镜的整个生物体研究设计结构表型查询检索和分析系统
- 批准号:
2401096 - 财政年份:2023
- 资助金额:
$ 13.45万 - 项目类别:
Standard Grant
User-friendly Analysis Platform for Decentralized Multi-site Diffusion MRI Studies
用于分散式多站点扩散 MRI 研究的用户友好分析平台
- 批准号:
10724720 - 财政年份:2023
- 资助金额:
$ 13.45万 - 项目类别:
DATA ANALYTICS, STATISTICAL AND BIOINFORMATIC ANALYSIS AND TOOL DEVELOPMENT, Genome wide association studies (GWAS)
数据分析、统计和生物信息分析及工具开发、全基因组关联研究 (GWAS)
- 批准号:
10976182 - 财政年份:2023
- 资助金额:
$ 13.45万 - 项目类别:
Theoretical and Empirical Studies on the Survival and Decline of Firms: A Comparative Analysis of Super-Longevity (Shinise) Firms and Longevity (Shinise) Firms
企业生存与衰落的理论与实证研究:超长寿企业与长寿企业的比较分析
- 批准号:
23H00849 - 财政年份:2023
- 资助金额:
$ 13.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on topological and geometric structure analysis and visualization of spatio-temporal data
时空数据拓扑几何结构分析与可视化研究
- 批准号:
23K11020 - 财政年份:2023
- 资助金额:
$ 13.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DMS/NIGMS 1: Statistical Methods for Design and Analysis of Clinical-scale Single Cell Studies
DMS/NIGMS 1:临床规模单细胞研究设计和分析的统计方法
- 批准号:
2245575 - 财政年份:2023
- 资助金额:
$ 13.45万 - 项目类别:
Standard Grant