Collaborative Research: Inference for Network Models with Covariates: Leveraging Local Information for Statistically and Computationally Efficient Estimation of Global Parameters

协作研究:具有协变量的网络模型的推理:利用局部信息对全局参数进行统计和计算上的高效估计

基本信息

  • 批准号:
    1713082
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Large datasets, which are naturally modeled as a network or graph, arise in almost every field of human endeavor. For example, Facebook is a social network, where nodes are users, with edges corresponding to friendships. In gene networks, nodes represent genes with connections corresponding to their co-expression. In ecological networks, the nodes are animal species, with edges determined according to who eats whom. A major focus of research for network or graph data has been on identifying community membership of the nodes. However, what is often more important for scientific purposes is examining the nature and evolution of edge and membership probabilities, for instance changes in gene features of individuals as a function of some unknown factor, like a disease. The focus on using other measured features of nodes and edges could add, in decisive ways, to the information available from observed edges or interactions between nodes. These could be disease symptoms or test results, or demographic information of users in social networks. Statistical inference in such models, despite its importance, has only just begun to be studied. There are both theoretical and computational challenges, due both to the complexity of models fitted, and the size of data sets. The research will lead to the development of algorithms for fitting models and statistical measures of confidence, with potential applications to many fields. The research is focused on block models for graphs, when node or edge covariates are present. When formulated, these models are no longer block models, but models whose membership probabilities depend upon covariates and whose connection probabilities depend both on block membership and individual covariates. Fitting algorithms involve alternating between fitting block and covariate parameters. Variational (mean field) approaches which effectively lead to semi-parametric model fitting with nK membership "nuisance" parameters, with n representing the number of nodes and K the number of communities, are examined. As these approaches have been found by the PIs to be unstable for large n, the PIs have already begun to investigate the theoretical and practical aspects of divide and conquer algorithms where many subgraphs are independently fit. The PIs will study the statistical properties, both asymptotically and through simulations, and develop practicable and computationally stable methods for large, relatively sparse graphs.
大数据集自然地被建模为网络或图形,几乎出现在人类工作的每一个领域。例如,Facebook是一个社交网络,其中的节点是用户,边缘对应于友谊。在基因网络中,节点代表具有与其共表达相对应的连接的基因。在生态网络中,节点是动物物种,其边缘取决于谁吃谁。网络或图形数据研究的一个主要焦点一直是识别节点的社区成员身份。然而,对于科学目的来说,更重要的往往是检查边缘概率和成员概率的性质和演变,例如,个人基因特征作为某种未知因素的函数的变化,如疾病。将重点放在使用节点和边的其他测量特征上,可以决定性地增加从观察到的边或节点之间的相互作用获得的信息。这些可能是疾病症状或检测结果,或者是社交网络用户的人口统计信息。尽管这类模型的统计推断很重要,但人们对它的研究才刚刚开始。既有理论上的挑战,也有计算上的挑战,这既是由于所拟合的模型的复杂性,也是由于数据集的大小。这项研究将导致开发用于拟合模型和统计置信度度量的算法,并有可能在许多领域应用。研究的重点是图的块模型,当节点或边协变量存在时。在公式化后,这些模型不再是块模型,而是其成员概率取决于协变量、其连接概率取决于块成员资格和单个协变量的模型。拟合算法包括在拟合块参数和协变量参数之间交替。研究了有效地导致半参数模型拟合的变分(平均场)方法,其中n表示节点数,K表示社区数。由于PI已经发现这些方法对于大n是不稳定的,所以PI已经开始研究分治算法的理论和实践方面,其中许多子图是独立适合的。PI将通过渐近和模拟来研究统计特性,并为大型、相对稀疏的图形开发实用且计算稳定的方法。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Provable Estimation of the Number of Blocks in Block Models
块模型中块数量的可证明估计
Covariate Regularized Community Detection in Sparse Graphs
When random initializations help: a study of variational inference for community detection
当随机初始化有帮助时:社区检测的变分推理研究
Convergence of Gradient EM on Multi-component Mixture of Gaussians
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bowei Yan;Mingzhang Yin;Purnamrita Sarkar
  • 通讯作者:
    Bowei Yan;Mingzhang Yin;Purnamrita Sarkar
Mean Field for the Stochastic Blockmodel: Optimization Landscape and Convergence Issues
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Soumendu Sundar Mukherjee;Purnamrita Sarkar;Y. X. R. Wang;Bowei Yan
  • 通讯作者:
    Soumendu Sundar Mukherjee;Purnamrita Sarkar;Y. X. R. Wang;Bowei Yan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Purnamrita Sarkar其他文献

Hierarchical community detection by recursive bi-partitioning
通过递归双分区进行分层社区检测
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianxi Li;Sharmodeep Bhattacharyya;Purnamrita Sarkar;Peter J. Bickel;E. Levina
  • 通讯作者:
    E. Levina
On the Theoretical Properties of the Network Jackknife
论网络折刀的理论性质
Tractable algorithms for proximity search on large graphs
用于大图邻近搜索的易于处理的算法
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Moore;Purnamrita Sarkar
  • 通讯作者:
    Purnamrita Sarkar
Higher-Order Correct Multiplier Bootstraps for Count Functionals of Networks
网络计数泛函的高阶正确乘法器自举
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiaohui Lin;Robert Lunde;Purnamrita Sarkar
  • 通讯作者:
    Purnamrita Sarkar
Subsampling Sparse Graphons Under Minimal Assumptions
最小假设下的稀疏图形子采样
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Robert Lunde;Purnamrita Sarkar
  • 通讯作者:
    Purnamrita Sarkar

Purnamrita Sarkar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Purnamrita Sarkar', 18)}}的其他基金

Learning with Confidence: Bootstrapping Error Estimates for Stochastic Iterative Algorithms
充满信心地学习:随机迭代算法的自举误差估计
  • 批准号:
    2109155
  • 财政年份:
    2021
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
  • 批准号:
    2311249
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: MEDIUM: General and Scalable Pluggable Type Inference
合作研究:SHF:MEDIUM:通用且可扩展的可插入类型推理
  • 批准号:
    2312263
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324490
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324489
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
  • 批准号:
    2311251
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312502
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了