Learning with Confidence: Bootstrapping Error Estimates for Stochastic Iterative Algorithms

充满信心地学习:随机迭代算法的自举误差估计

基本信息

  • 批准号:
    2109155
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

In this age of large-scale high-dimensional data analysis, stochastic iterative optimization methods constitute a popular class of algorithms, which look at one data point at a time. These algorithms are increasingly entrusted with decision-making tasks, from discarding emails as spam to recommending routes when one drives to work, to the future decisions made by self-driving cars and medical images produced for diagnostic purposes. These applications give rise to noisy data resulting from measurement errors and variability in the experimental setup or environment. Despite this, almost all current theoretical results focus on the accurate estimation of underlying parameters. However, it is crucial to pay attention to confidence intervals that quantify the variability of the learned parameters, which allows one to make decisions with confidence. This research will develop a mathematical framework for the estimation of uncertainty of a broad class of stochastic iterative optimization methods. This project will also help train graduate students and postdoctoral scholars in uncertainty estimation for large-scale learning problems, thus making them better prepared for careers in both industry and academia. The investigators will establish central limit theorems and consistent online bootstrap procedures for fundamental stochastic iterative learning algorithms, incorporate these algorithms in software packages, and develop a framework for assessing confidence in point estimate predictions in a broad range of applications. These goals will be achieved using a variety of recently developed tools, including concentration inequalities for products of random matrices, high dimensional statistics, and theoretical advances in deep learning optimization methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个大规模高维数据分析的时代,随机迭代优化方法构成了一类流行的算法,它一次只查看一个数据点。这些算法越来越多地被赋予决策任务,从丢弃垃圾邮件到推荐开车上班的路线,再到自动驾驶汽车和用于诊断目的的医学图像的未来决策。这些应用会产生由测量误差和实验设置或环境的可变性引起的噪声数据。 尽管如此,目前几乎所有的理论结果都集中在基本参数的准确估计上。然而,重要的是要注意量化学习参数的可变性的置信区间,这使得人们能够有信心地做出决策。本研究将发展一个数学架构,以估计一大类随机迭代最佳化方法的不确定性。该项目还将帮助培训研究生和博士后学者对大规模学习问题的不确定性估计,从而使他们更好地为工业和学术界的职业生涯做好准备。研究人员将建立基本随机迭代学习算法的中心极限定理和一致的在线引导程序,将这些算法纳入软件包,并开发一个框架,用于评估广泛应用中点估计预测的置信度。这些目标将通过使用各种最新开发的工具来实现,包括随机矩阵乘积的浓度不等式、高维统计和深度学习优化方法的理论进展。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bootstrapping the Error of Oja's Algorithm
  • DOI:
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Robert Lunde;Purnamrita Sarkar;Rachel A. Ward
  • 通讯作者:
    Robert Lunde;Purnamrita Sarkar;Rachel A. Ward
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Purnamrita Sarkar其他文献

Hierarchical community detection by recursive bi-partitioning
通过递归双分区进行分层社区检测
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianxi Li;Sharmodeep Bhattacharyya;Purnamrita Sarkar;Peter J. Bickel;E. Levina
  • 通讯作者:
    E. Levina
On the Theoretical Properties of the Network Jackknife
论网络折刀的理论性质
Tractable algorithms for proximity search on large graphs
用于大图邻近搜索的易于处理的算法
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Moore;Purnamrita Sarkar
  • 通讯作者:
    Purnamrita Sarkar
Higher-Order Correct Multiplier Bootstraps for Count Functionals of Networks
网络计数泛函的高阶正确乘法器自举
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiaohui Lin;Robert Lunde;Purnamrita Sarkar
  • 通讯作者:
    Purnamrita Sarkar
Subsampling Sparse Graphons Under Minimal Assumptions
最小假设下的稀疏图形子采样
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Robert Lunde;Purnamrita Sarkar
  • 通讯作者:
    Purnamrita Sarkar

Purnamrita Sarkar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Purnamrita Sarkar', 18)}}的其他基金

Collaborative Research: Inference for Network Models with Covariates: Leveraging Local Information for Statistically and Computationally Efficient Estimation of Global Parameters
协作研究:具有协变量的网络模型的推理:利用局部信息对全局参数进行统计和计算上的高效估计
  • 批准号:
    1713082
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Increasing confidence in Australian carbon disclosures
增强对澳大利亚碳披露的信心
  • 批准号:
    DP240100414
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
Drive with Confidence: A Safe and Secure Driving System to Mitigate Remote Vehicle Hijacking Risks
放心驾驶:安全可靠的驾驶系统,可降低远程车辆劫持风险
  • 批准号:
    10077064
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
  • 批准号:
    2796588
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
An Empirical Study of the Determinants and Consequences of Citizens' Confidence in the Armed Forces
公民对武装部队信心的决定因素及其后果的实证研究
  • 批准号:
    23KJ2013
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Single-Molecule High-Confidence Detection of miRNA Cancer Biomarkers
miRNA 癌症生物标志物的单分子高置信度检测
  • 批准号:
    10612611
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Development and testing of a tool to assess health workers' clinical confidence to provide perinatal bereavement care in Sub-Saharan Africa
开发和测试工具来评估卫生工作者在撒哈拉以南非洲地区提供围产期丧亲护理的临床信心
  • 批准号:
    MR/X004082/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
A novel mobile application improves balance confidence in walking aid users
新颖的移动应用程序提高了助行器用户的平衡信心
  • 批准号:
    497850
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
ATD: Algorithms for Real-time Dynamic Risk Identification with Statistical Confidence
ATD:具有统计置信度的实时动态风险识别算法
  • 批准号:
    2220537
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Using AI to improve our understanding of verbal confidence and to aid decision-making: Eyewitness lineup identification as a model case
使用人工智能提高我们对言语信心的理解并辅助决策:以目击者阵容识别为典型案例
  • 批准号:
    2241989
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Building Confidence through Inquiry, Research, Community Leadership, and Engagement
通过探究、研究、社区领导和参与建立信心
  • 批准号:
    2236107
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了