EAPSI: Developing Statistical Methods for Removing Unwanted Variation with Negative Controls in Genetics and Causal Inference
EAPSI:开发统计方法,通过遗传学和因果推理中的负控制消除不需要的变异
基本信息
- 批准号:1713563
- 负责人:
- 金额:$ 0.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Fellowship Award
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Unwanted variation is a common problem in statistical analysis that makes it difficult for researchers to distinguish between signal and noise. For example, in the field of genetics, a researcher might to try to detect the difference in gene expression between a cancer tumor and a nearby benign region. The difference between the two regions is the variation of interest--this is wanted variation. However, differences in genetic techniques between laboratories can create unwanted variation in the data, which can lead to the researcher reaching incorrect conclusions from the data. The unwanted variation can either induce bias, distorting the true relationship between the genes and diseases, or can decrease precision, masking the variation of interest. Ideally, the researcher would like to remove the unwanted variation. One way to achieve this goal is through a negative control, which is a variable that is associated with the unwanted variation, but is not associated with the variation of interest. The goal of this project is to develop statistical techniques for using negative controls to effectively remove unwanted variation while keeping the variation of interest. These methods will be useful in a wide variety of fields, but will focus on genetics and causal inference, including experimental design. This research will be conducted in collaboration with Professor Terence Speed, a leading expert on negative controls in this context, at the Walter and Eliza Hall Medical Institute in Melbourne, Australia.The fields of epidemiology, causal inference, and genetics all have methods related to removing unwanted variation. This project will synthesize approaches from these fields to build new statistical methods for negative controls. These methods include hypothesis testing, propensity score matching, and parametric models, and rely on different frameworks and assumptions. This project will bring together the flexibility of causal inference techniques, the statistical efficiency of genetics methods, and the rigorous hypotheses of epidemiology.This award, under the East Asia and Pacific Summer Institutes program, supports summer research by a U.S. graduate student and is jointly funded by NSF and the Australian Academy of Science.
不必要的变异是统计分析中的一个常见问题,它使研究人员难以区分信号和噪声。例如,在遗传学领域,研究人员可能试图检测癌症肿瘤和附近良性区域之间基因表达的差异。这两个区域之间的差异是感兴趣的变化-这是想要的变化。然而,实验室之间遗传技术的差异可能会在数据中产生不必要的变化,这可能导致研究人员从数据中得出错误的结论。不需要的变异可能会引起偏差,扭曲基因和疾病之间的真实关系,或者可能会降低精度,掩盖感兴趣的变异。理想情况下,研究人员希望消除不必要的变化。实现该目标的一种方法是通过阴性对照,其是与不需要的变化相关但与感兴趣的变化不相关的变量。 本项目的目标是开发使用阴性对照的统计技术,以有效地去除不需要的变异,同时保持感兴趣的变异。这些方法将在各个领域都很有用,但将重点关注遗传学和因果推理,包括实验设计。这项研究将与澳大利亚墨尔本沃尔特和伊丽莎霍尔医学研究所的阴性对照方面的领先专家特伦斯·斯皮德教授合作进行。流行病学、因果推理和遗传学领域都有与消除不必要的变异有关的方法。 本项目将综合这些领域的方法,为阴性对照建立新的统计方法。 这些方法包括假设检验、倾向得分匹配和参数模型,并依赖于不同的框架和假设。该项目将把因果推理技术的灵活性、遗传学方法的统计效率和流行病学的严格假设结合在一起。该奖项是东亚和太平洋夏季研究所计划的一部分,支持美国研究生的夏季研究,由NSF和澳大利亚科学院共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristen Hunter其他文献
Kristen Hunter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Developing statistical methods for structural change analysis using panel data
使用面板数据开发结构变化分析的统计方法
- 批准号:
24K16343 - 财政年份:2024
- 资助金额:
$ 0.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Developing Statistical Tools for Data integration and Data Fusion for Finite Population Inference
开发用于有限总体推理的数据集成和数据融合的统计工具
- 批准号:
2242820 - 财政年份:2023
- 资助金额:
$ 0.04万 - 项目类别:
Standard Grant
Developing user-centric training in rigorous research: post-selection inference, publication bias, and critical evaluation of statistical claims.
在严谨的研究中开展以用户为中心的培训:选择后推断、发表偏见和统计声明的批判性评估。
- 批准号:
10721491 - 财政年份:2023
- 资助金额:
$ 0.04万 - 项目类别:
Developing New Statistical Methods for Vector-Borne Disease Surveillance to Improve Accuracy while Reducing Cost
开发新的媒介传播疾病监测统计方法,以提高准确性并降低成本
- 批准号:
10774013 - 财政年份:2023
- 资助金额:
$ 0.04万 - 项目类别:
Developing Statistical Methods on Event History Data Subject to Data Complexities for HIV Disease Progression and Policy Evaluation
根据艾滋病毒疾病进展和政策评估的数据复杂性,开发事件历史数据的统计方法
- 批准号:
10700452 - 财政年份:2023
- 资助金额:
$ 0.04万 - 项目类别:
Developing computational, statistical and machine learning methods to uncover biological mechanisms of complex phenotypes
开发计算、统计和机器学习方法来揭示复杂表型的生物学机制
- 批准号:
RGPIN-2021-04062 - 财政年份:2022
- 资助金额:
$ 0.04万 - 项目类别:
Discovery Grants Program - Individual
Developing Statistical Tools and Visualization Methods for Understanding Heterogeneity in Distributed Networks: Applications to COVID-19 and Diabetes
开发统计工具和可视化方法来理解分布式网络中的异质性:在 COVID-19 和糖尿病中的应用
- 批准号:
468555 - 财政年份:2022
- 资助金额:
$ 0.04万 - 项目类别:
Operating Grants
Developing an innovative statistical framework to integrate multiple verbal autopsy datasets to estimate cause-specific mortality
开发创新的统计框架来整合多个口头尸检数据集,以估计特定原因的死亡率
- 批准号:
10710402 - 财政年份:2022
- 资助金额:
$ 0.04万 - 项目类别:
Developing Statistical Mechanics of Polymer Gels Based on Self-Avoiding Walk
基于自回避行走的聚合物凝胶统计力学发展
- 批准号:
22K13973 - 财政年份:2022
- 资助金额:
$ 0.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Developing an innovative statistical framework to integrate multiple verbal autopsy datasets to estimate cause-specific mortality
开发创新的统计框架来整合多个口头尸检数据集,以估计特定原因的死亡率
- 批准号:
10576014 - 财政年份:2022
- 资助金额:
$ 0.04万 - 项目类别:














{{item.name}}会员




