Stability, Mixing, and Stochastics in Hydrodynamics
流体动力学中的稳定性、混合和随机
基本信息
- 批准号:1713886
- 负责人:
- 金额:$ 11.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The basic mathematical models that describe the behavior of fluid flows date back to the eighteenth century, and yet many phenomena observed in experiments are far from being well understood from a theoretical viewpoint. For instance, especially challenging is the study of fundamental stability mechanisms when weak dissipative forces (generated, for example, by molecular friction) interact with advection processes, such as mixing and stirring. The goal of this project is to develop new mathematical tools that may be used to make progress towards outstanding open problems in fluid dynamics and hydrodynamic stability, such as the stability of vortices and laminar flows, the appearance of coherent structures in turbulence and atmosphere/ocean dynamics, and the statistical description of turbulent flows.This research project revolves around the concepts of mixing and enhanced dissipation effects induced by a fluid, a mechanism that has been proven to be strongly connected to fundamental dissipation mechanisms in kinetic theory (Landau damping) and in fluid mechanics (inviscid damping). The investigator and collaborators aim to expand this emerging field of nonlinear partial differential equations, by building new analytical tools to study the complicated interaction between purely mathematical questions (regularity issues, perturbations of stochastic type, dynamical systems in infinite-dimensions) and concepts widely related to physical phenomena (mixing and nonlinear resonances). The goal is to develop robust nonlinear methods, with ideas borrowed from hypoellipticity in the sense of Hörmander, harmonic analysis and singular integral theory, and probability and stochastic processes.
描述流体流动行为的基本数学模型可以追溯到18世纪,然而,从理论的角度来看,在实验中观察到的许多现象还远远没有得到很好的理解。例如,特别具有挑战性的是当弱耗散力(例如由分子摩擦产生)与平流过程(例如混合和搅拌)相互作用时,对基本稳定机制的研究。该项目的目标是开发新的数学工具,可用于在流体动力学和流体动力稳定性领域悬而未决的开放问题上取得进展,例如涡旋和层流的稳定性、湍流中相干结构的出现和大气/海洋动力学,湍流的统计描述。本研究项目围绕混合和增强耗散效应的概念,通过流体,一种已被证明与动力学理论(朗道阻尼)和流体力学(无粘阻尼)中的基本耗散机制密切相关的机制。研究人员和合作者的目标是扩大非线性偏微分方程这一新兴领域,通过建立新的分析工具来研究纯数学问题(正则性问题,随机类型的扰动,无限维动力系统)和与物理现象(混合和非线性共振)广泛相关的概念之间的复杂相互作用。我们的目标是开发强大的非线性方法,从Hörmander,调和分析和奇异积分理论,概率和随机过程的意义上的hypoellipticity借用的想法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michele Coti Zelati其他文献
Separation of time-scales in drift-diffusion equations on R2
R2 上漂移扩散方程中时间尺度的分离
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Michele Coti Zelati;Michele Dolce - 通讯作者:
Michele Dolce
A P ] 2 6 M ar 2 01 8 A sufficient condition for the Kolmogorov 4 / 5 law for stationary martingale solutions to the 3 D Navier-Stokes equations
A P ] 2 6 Mar 2 01 8 3 D Navier-Stokes 方程平稳鞅解的 Kolmogorov 4 / 5 定律的充分条件
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
J. Bedrossian;Michele Coti Zelati;Samuel Punshon;F. Weber - 通讯作者:
F. Weber
On the Theory of Global Attractors and Lyapunov Functionals
- DOI:
10.1007/s11228-012-0215-2 - 发表时间:
2013-03 - 期刊:
- 影响因子:1.6
- 作者:
Michele Coti Zelati - 通讯作者:
Michele Coti Zelati
Limiting Absorption Principles and Linear Inviscid Damping in the Euler–Boussinesq System in the Periodic Channel
- DOI:
10.1007/s00220-024-05224-y - 发表时间:
2025-02-17 - 期刊:
- 影响因子:2.600
- 作者:
Michele Coti Zelati;Marc Nualart - 通讯作者:
Marc Nualart
Mixing and diffusion for rough shear flows.
粗剪切流的混合和扩散。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Maria Colombo;Michele Coti Zelati;Klaus Widmayer - 通讯作者:
Klaus Widmayer
Michele Coti Zelati的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michele Coti Zelati', 18)}}的其他基金
Stable structures and chaotic dynamics in fluid flows
流体流动中的稳定结构和混沌动力学
- 批准号:
EP/X020886/1 - 财政年份:2023
- 资助金额:
$ 11.89万 - 项目类别:
Research Grant
相似海外基金
CAREER: Graded and Reliable Aerosol Deposition for Electronics (GRADE): Understanding Multi-Material Aerosol Jet Printing with In-Line Mixing
职业:电子产品的分级且可靠的气溶胶沉积 (GRADE):了解通过在线混合进行多材料气溶胶喷射打印
- 批准号:
2336356 - 财政年份:2024
- 资助金额:
$ 11.89万 - 项目类别:
Standard Grant
Moving away from aeration – utilising computational fluid dynamics modelling ofmechanical mixing within an industrial scale nature-based wastewater treatment system
摆脱曝气 — 在工业规模的基于自然的废水处理系统中利用机械混合的计算流体动力学模型
- 批准号:
10092420 - 财政年份:2024
- 资助金额:
$ 11.89万 - 项目类别:
Collaborative R&D
Capturing Oceanic Submesoscales, Stirring and Mixing with Sound and Simulations
通过声音和模拟捕捉海洋亚尺度、搅拌和混合
- 批准号:
EP/Y014693/1 - 财政年份:2024
- 资助金额:
$ 11.89万 - 项目类别:
Research Grant
Resonant Acoustic Mixing facility for sustainable chemical manufacturing
用于可持续化学制造的共振声学混合设施
- 批准号:
EP/Z53111X/1 - 财政年份:2024
- 资助金额:
$ 11.89万 - 项目类别:
Research Grant
Collaborative Research: A Multipronged Approach to Investigate how Hydrography and Mixing Shape Productive Fjord Ecosystems in Greenland
合作研究:采用多管齐下的方法来研究水文学和混合如何塑造格陵兰岛富有生产力的峡湾生态系统
- 批准号:
2335928 - 财政年份:2024
- 资助金额:
$ 11.89万 - 项目类别:
Standard Grant
Collaborative Research: A Multipronged Approach to Investigate how Hydrography and Mixing Shape Productive Fjord Ecosystems in Greenland
合作研究:采用多管齐下的方法来研究水文学和混合如何塑造格陵兰岛富有生产力的峡湾生态系统
- 批准号:
2335929 - 财政年份:2024
- 资助金额:
$ 11.89万 - 项目类别:
Standard Grant
Capturing Oceanic Submesoscales, Stirring, and Mixing with Sound and Simulations
通过声音和模拟捕捉海洋亚尺度、搅拌和混合
- 批准号:
MR/X035611/1 - 财政年份:2024
- 资助金额:
$ 11.89万 - 项目类别:
Fellowship
Quantification of the Impact of Hydrologic Controls on Anomalous Solute Transport and Mixing Dynamics in Partially Saturated Porous Media
水文控制对部分饱和多孔介质中异常溶质输运和混合动力学影响的量化
- 批准号:
2329250 - 财政年份:2024
- 资助金额:
$ 11.89万 - 项目类别:
Standard Grant
CAREER: Mixing and Equidistribution in Number Theory and Geometry
职业:数论和几何中的混合和均匀分布
- 批准号:
2337911 - 财政年份:2024
- 资助金额:
$ 11.89万 - 项目类别:
Continuing Grant