EAPSI: Understanding How a Complex Cellular Environment Influences Amyloid Fibril Protein Dynamics

EAPSI:了解复杂的细胞环境如何影响淀粉样原纤维蛋白动态

基本信息

  • 批准号:
    1713982
  • 负责人:
  • 金额:
    $ 0.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Fellowship Award
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

This project supports research in a collaboration with Prof. Xueqian Kong, an expert on studying materials using the cutting-edge technique of fast magic angle spinning-nuclear magnetic resonance (MAS-NMR), in the department of Chemistry, Zhejiang University in Hangzhou to develop innovative methodology in the field of biological solid-state NMR. These new methods could significantly enhance the spectral sensitivity in biological NMR samples. Over the 8-week funding period, we will focus on studying protein dynamics in complex cellular environments. Current solid-state NMR techniques suffers from the poor sensitivity because it reads out information on low gamma nuclei (e.g. Carbon-13). This can be solved by using a sensitivity enhancing technique, dynamic nuclear polarization (DNP) NMR, but this must be done at extremely cold temperatures (100 K), which eliminate dynamic motions. The current collaborative project is to learn and apply fast MAS-NMR which reports on higher gamma nuclei (e.g. Hydrogen-1), performed at room temperature, to study the protein dynamics of amyloid fibrils in their native cellular environments. The broader impact of this project includes applying these methods to study fibrils formed by proteins such as tau, which is implicated in Alzheimer's disease.This project will encompass a balanced approach that uses the innovative sample preparation methods developed in the home lab and sound methodology and instrumentation to demonstrate significant sensitivity enhancement in biomolecular NMR during the EAPSI research at Zhejiang University. This work will result two major findings i) if fast MAS-NMR can be used to study proteins at endogenous levels and ii) determine if the cellular environment affect protein dynamics, particularly of intrinsically disordered regions. The intellectual merits of the proposed research lie in establishing fast MAS-NMR as a complementary technique to DNP-NMR for studying proteins at endogenous levels in complex cellular environments. Its broader impacts lie in developing alternative methods that will allow for the further study of intrinsically disordered proteins that make fibrils that are often implicated in disease states.This award, under the East Asia and Pacific Summer Institutes program, supports summer research by a U.S. graduate student and is jointly funded by NSF and the Chinese Ministry of Science and Technology.
本项目支持与浙江大学化学系孔学谦教授合作研究,利用快速魔角旋转核磁共振(MAS-NMR)的尖端技术研究材料,开发生物固态核磁共振领域的创新方法。这些新方法可以显著提高生物核磁共振样品的光谱灵敏度。在为期8周的资助期内,我们将重点研究复杂细胞环境中的蛋白质动力学。目前的固态核磁共振技术存在灵敏度差的问题,因为它读出的是低伽马核(例如碳-13)的信息。这可以通过使用灵敏度增强技术——动态核极化(DNP)核磁共振来解决,但这必须在极冷的温度(100 K)下进行,从而消除了动态运动。目前的合作项目是学习和应用在室温下进行的高伽马核(例如氢-1)的快速MAS-NMR,以研究淀粉样蛋白原纤维在其原生细胞环境中的蛋白质动力学。这个项目更广泛的影响包括应用这些方法来研究由蛋白质形成的原纤维,如与阿尔茨海默病有关的tau蛋白。本项目将采用一种平衡的方法,利用在家庭实验室开发的创新样品制备方法和完善的方法和仪器,在浙江大学的EAPSI研究期间展示生物分子核磁共振的显着灵敏度增强。这项工作将产生两个主要发现:1)是否可以使用快速MAS-NMR来研究内源性水平的蛋白质;2)确定细胞环境是否影响蛋白质动力学,特别是内在无序区域。所提出的研究的智力优点在于建立快速MAS-NMR作为DNP-NMR的补充技术,用于研究复杂细胞环境中内源性水平的蛋白质。其更广泛的影响在于开发替代方法,这些方法将允许进一步研究产生通常与疾病状态有关的原纤维的内在无序蛋白质。该奖项由美国国家科学基金会和中国科技部共同资助,隶属于东亚和太平洋暑期研究所项目,支持美国研究生的暑期研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Whitney Costello其他文献

Combining DNP NMR with Segmental and Specific Labeling to Study the Quaternary Structures of Yeast Prion Protein Strains
  • DOI:
    10.1016/j.bpj.2017.11.1225
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Yiling Xiao;Whitney Costello;Carla Madrid;Kendra Frederick
  • 通讯作者:
    Kendra Frederick

Whitney Costello的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding how pollutant aerosol particulates impact airway inflammation
了解污染物气溶胶颗粒如何影响气道炎症
  • 批准号:
    2881629
  • 财政年份:
    2027
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Studentship
Understanding how predictions modulate visual perception
了解预测如何调节视觉感知
  • 批准号:
    DE240100327
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Discovery Early Career Researcher Award
CAREER: Understanding how hierarchical organization of growth plate stem cells controls skeletal growth
职业:了解生长板干细胞的分层组织如何控制骨骼生长
  • 批准号:
    2339761
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Continuing Grant
Organelle teamwork: understanding how peroxisomes and mitochondria communicate in neuronal cell function
细胞器团队合作:了解过氧化物酶体和线粒体在神经细胞功能中如何沟通
  • 批准号:
    BB/Z514767/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Fellowship
Understanding how endocrine disruptors and chemical mixtures of concern target the immune system to trigger or perpetuate disease (ENDOMIX)
了解内分泌干扰物和相关化学混合物如何针对免疫系统引发或延续疾病 (ENDOMIX)
  • 批准号:
    10106479
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    EU-Funded
CAREER: Understanding how Earth's coupled carbon and sulfur cycles evolved after the oxygenation of the atmosphere
职业:了解地球的耦合碳和硫循环在大气氧化后如何演变
  • 批准号:
    2339237
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Continuing Grant
Understanding how exocrine-derived signals promote beta cell growth
了解外分泌信号如何促进 β 细胞生长
  • 批准号:
    10750765
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
Understanding and manipulating how Trypanosoma cruzi infects its triatomine insect hosts
了解和操纵克氏锥虫如何感染其锥蝽昆虫宿主
  • 批准号:
    BB/Y001125/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Research Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Discovery Early Career Researcher Award
Understanding the mechanisms of immune receptor signalling and how to target this process in disease
了解免疫受体信号传导机制以及如何针对疾病中的这一过程
  • 批准号:
    2897399
  • 财政年份:
    2023
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了