EAPSI: Controlling and Utilizing Local Wave Resonance in Engineered Materials

EAPSI:控制和利用工程材料中的局部波谐振

基本信息

  • 批准号:
    1714079
  • 负责人:
  • 金额:
    $ 0.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Fellowship Award
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

This award supports research that contributes to the PI's long-term goal of developing a revolutionary material that combines the two concepts of nontraditional material properties and thermal expansion to produce controlled actuation in the resonant region of the material. The researcher will study local resonance, and how it behaves on many scales. As waves are used to excite a structure, there are particular frequencies which match the structure and cause extremely amplified motion; these are the natural frequencies. This type of phenomenon can be seen in earthquakes when building collapse happens seemingly at random, but is tied to the earthquake wave frequency matching the natural frequency of that structure. This phenomenon is known as resonance. This project will look at resonance on a much smaller scale using ultrasonic waves, which are longitudinal waves in the frequency above the audible sound for humans. These rapid waves require a much smaller structure in order to fall into a range where resonance is possible. When resonance occurs, the resulting concentration of the ultrasonic waves can be used to alter the material properties in that region. Earthquake waves and sound waves share similar properties and are governed by similar equations because they are both types of longitudinal waves. Therefore we can look to large-scale concepts to help us understand even very small material structures. The resources and expertise provided by Dr. Chin-Hsiung Loh and his laboratory group at National Taiwan University will be invaluable to the development of these concepts based on the group's extensive knowledge and past work concerning the fundamentals of wave propagation and behavior. In this project, the researcher and Dr. Loh's group will perform experiments and build models that can help predict and further understand local resonance within engineered materials. These materials can then be used to utilize and control waves. The implementation of established earthquake wave theories and simulations into nanomaterials will provide a more unabridged understanding of wave behavior over the broad range of engineering scale.The research impacts of this material and the subsequent consolidation of fundamental wave theories would shift the thinking surrounding the traditionally undesirable side effect of ultrasonic heating into the purposeful field of controlled resistance and selective actuation. By exciting local resonance using ultrasonic waves in a liquid-filled chamber suspended in a soft matrix, it is hypothesized that the liquid can be heated significantly to produce a volumetric thermal expansion. This expansion would undoubtedly cause an outward pressure on the cavity and therefore on the soft surrounding matrix. This actuation would produce a resistive force that could stop deformation of the material structure due to an external pressure. The actuation of the liquid can be predicted through the thermal expansion coefficient, which will allow for the production of a repeatable and tailorable resulting pressure. As a further step in this research, it is the goal of the researcher to develop a nanocomposite with sets of linear chambers having identical resonances. After a particular chamber undergoes deformation, however, it would have a local resonance that is unique and independent of the undisturbed chambers and could be excited individually. This chamber would then undergo isolated pressurization causing centralized actuation limited to the chamber experiencing the deforming external pressure. The research will create a new type of actuation technology along with coupling acoustic wave resonance theory with ultrasonic heat transfer to produce novel wave vibration theories and numerical modeling. The experimental methods and analysis techniques would be unprecedented in the materials engineering field and would open the door for new uses of well-established structural health monitoring and analysis wave sensors. This research project seeks to collaborate across scale, diverse engineering fields, and unique individual backgrounds to create networks for future collaboration and discussion.This award, under the East Asia and Pacific Summer Institutes program, supports summer research by a U.S. graduate student and is jointly funded by NSF and the Ministry of Science and Technology of Taiwan.
该奖项支持有助于 PI 开发革命性材料的长期目标的研究,该材料结合了非传统材料特性和热膨胀这两个概念,以在材料的谐振区域产生受控驱动。研究人员将研究局部共振及其在多个尺度上的表现。当波被用来激励结构时,有一些特定的频率与结构相匹配并引起极其放大的运动;这些是固有频率。这种现象可以在地震中看到,当建筑物倒塌看似随机发生时,但与与该结构的固有频率相匹配的地震波频率有关。这种现象称为共振。该项目将使用超声波来研究更小规模的共振,超声波是频率高于人类可听声音的纵波。这些快速波需要更小的结构才能落入可能发生共振的范围。当发生共振时,产生的超声波浓度可用于改变该区域的材料特性。地震波和声波具有相似的特性,并且受相似的方程控制,因为它们都是纵波的类型。因此,我们可以借助大尺度的概念来帮助我们理解甚至非常小的材料结构。国立台湾大学的 Chin-Hsiung Loh 博士及其实验室小组提供的资源和专业知识对于这些概念的发展非常宝贵,该小组基于该小组在波传播和行为基础方面的广泛知识和过去的工作。在这个项目中,研究人员和 L​​oh 博士的团队将进行实验并建立模型,以帮助预测和进一步了解工程材料内的局部共振。这些材料可用于利用和控制波。将已建立的地震波理论和模拟应用到纳米材料中,将为广泛的工程规模提供对波行为的更全面的理解。这种材料的研究影响和随后对基波理论的巩固将把围绕超声波加热传统上不良副作用的思维转变为有目的的受控阻力和选择性致动领域。通过在悬浮在软基体中的充满液体的室中使用超声波激发局部共振,假设液体可以被显着加热以产生体积热膨胀。这种膨胀无疑会对空腔产生向外的压力,从而对周围的软基质产生向外的压力。这种驱动会产生阻力,可以阻止材料结构因外部压力而变形。液体的驱动可以通过热膨胀系数来预测,这将允许产生可重复和可定制的最终压力。作为这项研究的下一步,研究人员的目标是开发一种具有多组具有相同共振的线性室的纳米复合材料。然而,在特定的腔室发生变形后,它将产生独特的局部共振,并且独立于未受干扰的腔室,并且可以单独激发。然后,该室将经历隔离加压,导致集中致动仅限于经历变形外部压力的室。该研究将创建一种新型驱动技术,将声波共振理论与超声波传热耦合起来,产生新颖的波振动理论和数值模拟。实验方法和分析技术在材料工程领域将是前所未有的,并将为成熟的结构健康监测和分析波传感器的新用途打开大门。该研究项目旨在跨规模、不同工程领域和独特的个人背景进行合作,为未来的合作和讨论创建网络。该奖项属于东亚和太平洋夏季学院计划,支持美国研究生的夏季研究,并由美国国家科学基金会和台湾科学技术部共同资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Morgan Funderburk其他文献

Morgan Funderburk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Basic construction for medical treatment of oral cancer by controlling of metal-binding protein expression utilizing optogenetics
利用光遗传学控制金属结合蛋白表达治疗口腔癌的基本构建
  • 批准号:
    20K10151
  • 财政年份:
    2020
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Helicity Controlling and function creations of dynamic supramolecular metal complexes by utilizing weak interactions
利用弱相互作用动态超分子金属配合物的螺旋度控制和功能创建
  • 批准号:
    19K05505
  • 财政年份:
    2019
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a driving support system for preventing overtunrning accidents of farm tractor utilizing controlling chaos
利用混沌控制预防农用拖拉机翻车事故的驾驶辅助系统的研制
  • 批准号:
    19H00959
  • 财政年份:
    2019
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Controlling molecular orientation of Stilbene-derivatives by utilizing one-dimensional nano space: Toward constructing novel wavelength-conversion devices
利用一维纳米空间控制二苯乙烯衍生物的分子取向:构建新型波长转换器件
  • 批准号:
    18K04864
  • 财政年份:
    2018
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Vaccine development utilizing gnotobiotic pig model for controlling viral gastroenteritis(Fostering Joint International Research)
利用限生猪模型开发疫苗来控制病毒性胃肠炎(促进国际联合研究)
  • 批准号:
    16KK0178
  • 财政年份:
    2017
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
Development of folliclogenetic tecnique utilizing mesenchymal cells capable of controlling microenvironment
利用能够控制微环境的间充质细胞开发卵泡发生技术
  • 批准号:
    15K19703
  • 财政年份:
    2015
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of a new type of steel greenhouse with high wind resistance utilizing the wind force reduction by controlling the aerodynamic shape
通过控制气动形状来降低风力,开发新型高抗风钢温室
  • 批准号:
    26630252
  • 财政年份:
    2014
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Isolation of the gene controlling inflorescence types in Hydrangea macrophylla by utilizing the phenomenon of constitutive activity of retrotransposon
利用反转录转座子组成活性现象分离控制绣球花序类型的基因
  • 批准号:
    21580039
  • 财政年份:
    2009
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishment of a Method for Precisely Controlling Mixing/Reaction in Stirred Vessels Utilizing Dynamic Changes of Flow Patterns
建立利用流型动态变化精确控制搅拌容器中混合/反应的方法
  • 批准号:
    16560656
  • 财政年份:
    2004
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Aeroacoustic Cavity Noise Controlling Devices Utilizing Strong Fluctuation into Turbulent Flows
利用强脉动湍流控制气动声腔噪声控制装置的研制
  • 批准号:
    16360087
  • 财政年份:
    2004
  • 资助金额:
    $ 0.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了