Collaborative Research: Modeling and Inference for Spatiotemporal Climate Impacts on Complex Ecosystems

合作研究:时空气候对复杂生态系统影响的建模和推断

基本信息

项目摘要

In many hierarchical dynamical systems, synchrony between multiple fluctuating variables (i.e., correlations or other similarities in fluctuations between variables through time) is more important than the individual variables themselves. For instance, a neuron may fire only when all of its input neurons fire synchronously, or the electrical grid may crash only when demands of multiple users become synchronized, producing total-usage spikes. Ecosystems can show this type of dependency on synchrony. Ecosystems include multiple trophic levels, with population signals from lower levels often being spatially aggregated to affect higher levels and human concerns such as fisheries. For instance, a predator is only harmed if its prey are scarce over its whole hunting area. And human fish exploitation is only reduced if fish decline synchronously everywhere. For systems of this type, it is primarily the synchronous components of signals that matter in the average signal that affects the next hierarchical level - non-synchronous components tend to cancel in the spatial average. Thus, spatial synchrony of population dynamics is very important to ecosystem dynamics generally. Spatial synchrony of population dynamics has been widely observed in organisms as diverse as mammals and protists, at distances up to thousands of kilometers. Synchrony is closely related to large-scale outbreaks and shortages. Synchrony has conservation implications because populations are at greater risk of simultaneous extinction if they are simultaneously rare. But in spite of the importance of synchrony in ecology, possible impacts of climate change on synchrony are very little studied. In this context, climate change constitutes not just warming, but also changes in other statistical aspects of environmental signals. It is also unknown the extent to which synchrony, and climate-change-induced changes therein, can be transmitted through predator-prey interacts and hence throughout entire food webs in complex patterns. The goals of this research are: (1) to develop mathematical models and statistics to build understanding of how potential changes in synchrony induced by climate change will ramify through complex ecosystems; (2) and to develop mathematical models and use them to understand the consequences of changes in synchrony for a widely observed empirical pattern called Taylor's law, a phenomenon fundamental to spatial ecology and applied in a variety of areas including fisheries management, conservation, and agriculture. Researchers will also strive, as time allows, to understand the consequences of changes in synchrony for species extinction risk.To meet goal (1) above, the researchers will perform stochastic-process modeling in a network context, to understand how changes in synchrony should theoretically cascade through complex species interaction networks; and will develop statistical methods combining wavelets and statistical path analysis, to be used to help infer how synchrony cascades through empirical interaction networks. A vector autoregressive moving average modelling framework will be constructed consisting of multiple habitat patches, with several species interacting within patches, migrating between patches, and being affected by a stochastic environment in each patch. For each species independently, dispersal and/or environmental synchronizing effects can be independently set to act directly on the species as synchronizing influences, or not. A given species may also be synchronized through its interactions with other synchronized species. The primary utility of the models is to make it possible to derive analytically, for each species, the relative importance of these direct and trophically-mediated synchronizing effects, thereby understanding the nature of trophic transmission of synchrony through the network. To meet goal (2) above, researchers will use the theory of ergodic stationary stochastic processes to represent population levels at different locations. If time allows, consequences of synchrony for extinction risk will be assessed through mathematical analysis within a classic stochastic matrix modelling framework, expanded to represent multiple populations across space.
在许多分层动态系统中,多个波动变量(即,变量之间波动的相关性或其他相似性)比单个变量本身更重要。例如,一个神经元可能只有在所有输入神经元同步激发时才会激发,或者电网可能只有在多个用户的需求同步时才会崩溃,从而产生总使用量尖峰。生态系统可以表现出这种对同步性的依赖。生态系统包括多个营养层次,来自较低层次的种群信号往往在空间上聚集起来,影响较高层次和渔业等人类关切的问题。例如,只有当猎物在整个狩猎区域都很稀少时,捕食者才会受到伤害。只有在各地鱼类数量同步下降的情况下,人类对鱼类的开发才会减少。对于这种类型的系统,主要是信号的同步分量在影响下一个层次级别的平均信号中起作用-非同步分量往往在空间平均中抵消。因此,种群动态的空间同步性对生态系统动态具有重要意义。种群动态的空间同步性已经在哺乳动物和原生生物等多种生物中广泛观察到,距离可达数千公里。同步性与大规模疫情和短缺密切相关。同步性具有保护意义,因为如果它们同时稀少,则种群同时灭绝的风险更大。但是,尽管同步性在生态学中的重要性,气候变化对同步性的可能影响却很少被研究。在这方面,气候变化不仅是变暖,而且还包括环境信号其他统计方面的变化。同步性和气候变化引起的变化在多大程度上可以通过捕食者-被捕食者的相互作用,从而以复杂的模式在整个食物网中传播,这一点也是未知的。本研究的目标是:(1)建立数学模型和统计数据,以了解气候变化引起的潜在同步变化如何通过复杂的生态系统产生影响;(2)建立数学模型,并利用它们来理解同步变化的后果,这是一个被广泛观察到的经验模式,称为泰勒定律,这是空间生态学的基本现象,并应用于包括渔业管理、保护和农业在内的各种领域。在时间允许的情况下,研究人员还将努力了解同步性变化对物种灭绝风险的影响。为了实现上述目标(1),研究人员将在网络环境中进行随机过程建模,以了解同步性变化在理论上如何通过复杂的物种相互作用网络级联;并将开发结合小波和统计路径分析的统计方法,用于帮助推断同步级联如何通过经验相互作用网络。一个向量自回归移动平均建模框架将构建多个栖息地补丁,补丁内的几个物种相互作用,补丁之间的迁移,并在每个补丁的随机环境的影响。对于每个物种独立地,扩散和/或环境同步效应可以独立地设置为直接作用于物种作为同步影响,或不。一个给定的物种也可以通过与其他同步物种的相互作用而同步。该模型的主要效用是使之有可能得到分析,为每个物种,这些直接和trophically介导的同步效应的相对重要性,从而了解通过网络的同步性的营养传输的性质。为了实现上述目标(2),研究人员将使用遍历平稳随机过程理论来表示不同位置的种群水平。如果时间允许,灭绝风险的同步后果将通过经典随机矩阵建模框架内的数学分析进行评估,扩展到代表跨空间的多个种群。

项目成果

期刊论文数量(36)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting Abundances of Aedes mcintoshi, a primary Rift Valley fever virus mosquito vector
  • DOI:
    10.1371/journal.pone.0226617
  • 发表时间:
    2019-12-17
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Campbell, Lindsay P.;Reuman, Daniel C.;Sang, Rosemary
  • 通讯作者:
    Sang, Rosemary
Tail associations in ecological variables and their impact on extinction risk
  • DOI:
    10.1002/ecs2.3132
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Ghosh, Shyamolina;Sheppard, Lawrence W.;Reuman, Daniel C.
  • 通讯作者:
    Reuman, Daniel C.
Travelling Waves for Adaptive Grid Discretizations of Reaction Diffusion Systems II: Linear Theory
反应扩散系统自适应网格离散化的行波 II:线性理论
Synchrony is more than its top-down and climatic parts: interacting Moran effects on phytoplankton in British seas
  • DOI:
    10.1371/journal.pcbi.1006744
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Lawrence W. Sheppard;Emma J. Defriez;P. C. Reid;D. Reuman
  • 通讯作者:
    Lawrence W. Sheppard;Emma J. Defriez;P. C. Reid;D. Reuman
Projected Shadowing-Based Data Assimilation
基于投影阴影的数据同化
  • DOI:
    10.1137/17m1141163
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    de Leeuw, Bart;Dubinkina, Svetlana;Frank, Jason;Steyer, Andrew;Tu, Xuemin;Vleck, Erik Van
  • 通讯作者:
    Vleck, Erik Van
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Reuman其他文献

Asymmetric relationships and their effects on coexistence
不对称关系及其对共存的影响
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Albert;Daniel Reuman
  • 通讯作者:
    Daniel Reuman
Stabilizing effects of biodiversity arise from species-specific dynamics rather than interspecific interactions in grasslands
生物多样性的稳定效应源于物种特定的动态,而非草原中的种间相互作用。
  • DOI:
    10.1038/s41559-025-02787-4
  • 发表时间:
    2025-07-11
  • 期刊:
  • 影响因子:
    14.500
  • 作者:
    Bo Meng;Mingyu Luo;Michel Loreau;Pubin Hong;Dylan Craven;Nico Eisenhauer;Forest Isbell;Maowei Liang;Daniel Reuman;Brian Wilsey;Jasper van Ruijven;Lei Zhao;Shaopeng Wang
  • 通讯作者:
    Shaopeng Wang

Daniel Reuman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Reuman', 18)}}的其他基金

Collaborative Research: Patterns, causes, and consequences of synchrony in giant kelp populations
合作研究:巨型海带种群同步性的模式、原因和后果
  • 批准号:
    2023474
  • 财政年份:
    2020
  • 资助金额:
    $ 42.66万
  • 项目类别:
    Standard Grant
Predictable feedbacks between warming, community structure and ecosystem functioning: a combined experimental and theoretical approach
变暖、群落结构和生态系统功能之间的可预测反馈:实验和理论相结合的方法
  • 批准号:
    NE/H020705/1
  • 财政年份:
    2010
  • 资助金额:
    $ 42.66万
  • 项目类别:
    Research Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 42.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 42.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344259
  • 财政年份:
    2024
  • 资助金额:
    $ 42.66万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 42.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
  • 批准号:
    2412294
  • 财政年份:
    2024
  • 资助金额:
    $ 42.66万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 42.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344260
  • 财政年份:
    2024
  • 资助金额:
    $ 42.66万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 42.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
  • 批准号:
    2323649
  • 财政年份:
    2024
  • 资助金额:
    $ 42.66万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 42.66万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了