Collaborative Research: Patterns, causes, and consequences of synchrony in giant kelp populations

合作研究:巨型海带种群同步性的模式、原因和后果

基本信息

项目摘要

Populations of organisms located in different, often far-apart places can change over time in similar ways. This natural phenomenon, known as synchrony, is important to many issues affecting societal well-being, such as those in medicine, public health, conservation, and natural resource management. For instance, synchrony is critical to the persistence, stability, and resilience of plant and animal populations, and can have cascading effects on biodiversity, ecosystem function, and associated benefits to society. However, many aspects of synchrony are poorly resolved. For example, understanding the influence of multiple potential drivers of synchrony—such as climatic events and predators—has been a longstanding challenge in ecology. Moreover, the causes of synchrony may change over space, time, and timescale (e.g., annual vs. decadal synchrony), but this potential is rarely explored, especially in marine ecosystems. The consequences of synchrony for the dynamics of diverse ecological communities, and the potential for synchrony to have cascading effects across ecosystem boundaries (e.g., from sea to land), are also understudied. Addressing these gaps is especially pressing because growing evidence indicates that climate change may alter patterns of synchrony, potentially leading to diminished spatial resilience of ecosystems. This project studies coastal kelp forests and sandy beach ecosystems to address several current gaps in the understanding of synchrony. The project generates knowledge to improve the understanding of these economically-valuable environments and the many organisms that they sustain. Broader impacts extend through the mentorship of researchers across career stages and student training in coastal ecology and data science. To improve educational opportunities for students from groups underrepresented in science, the project creates a Coastal-Heartland Marine Biology Exchange, in which undergraduates from the Midwest travel to California to carry out coastal field research, and undergraduates from Los Angeles interested in marine biology travel to Kansas to learn biostatistics. To benefit the management of kelp forests in California that have suffered dramatic declines in recent years, workshops will be hosted with coastal managers, conservation practitioners, and other stakeholders to identify restoration sites to enhance regional recovery, stability, and resilience. Methods, software, and data that are useable across scientific disciplines are published online following reproducible and transparent standards.The objective of this project is to investigate the patterns and causes of synchrony in giant kelp (Macrocystis pyrifera) forests and the consequences for coastal ecosystem structure and function. By integrating and leveraging numerous long-term, large-scale datasets and analyzing them with new statistical techniques, the investigators assess how oceanographic conditions, propagule dispersal, and sea urchin herbivory interact to structure the synchrony and stability of giant kelp populations over the past 36 years across 10 degrees of latitude in the northeast Pacific Ocean. New wavelet modeling tools and other statistical techniques are used to quantify the drivers of synchrony and how they operate across geography, time, and timescales. Using a 20-year spatial timeseries of reef biodiversity, it will be determined how giant kelp and other factors induce synchrony in a speciose community of understory algae through ‘cascades of synchrony’. Moreover, the team tests the degree to which giant kelp synchrony propagates across ecosystem boundaries to sandy beaches through the transport and deposition of allochthonous organic matter (kelp wrack), and how such spatial subsidies produce bottom-up cascades of synchrony to beach invertebrates and shorebirds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
分布在不同地方、往往相距遥远的生物种群也会以类似的方式随着时间的推移而变化。这种自然现象被称为同步性,对于影响社会福祉的许多问题都很重要,例如医学、公共卫生、保护和自然资源管理方面的问题。例如,同步性对于动植物种群的持久性、稳定性和恢复力至关重要,并可能对生物多样性、生态系统功能和相关的社会利益产生连锁影响。然而,同步的许多方面都没有得到很好的解决。例如,了解多种潜在的同步性驱动因素的影响--如气候事件和捕食者--一直是生态学中的一个长期挑战。此外,同步性的原因可能会随空间、时间和时间尺度而变化(例如,年度同步性与十年同步性),但这种潜力很少被探索,特别是在海洋生态系统中。同步性对不同生态群落动态的影响,以及同步性跨越生态系统边界(例如,从海洋到陆地)产生级联效应的可能性也未得到充分研究。解决这些差距尤其紧迫,因为越来越多的证据表明,气候变化可能改变同步模式,可能导致生态系统空间弹性减弱。该项目研究沿海海藻森林和沙滩生态系统,以解决目前在理解同步性方面的几个空白。该项目产生了知识,以提高对这些具有经济价值的环境及其维持的许多生物体的了解。更广泛的影响通过对不同职业阶段的研究人员的指导以及在沿海生态和数据科学方面的学生培训来实现。为了改善来自科学方面代表性不足群体的学生的教育机会,该项目创建了海岸-心脏地带海洋生物交流中心,来自中西部的本科生前往加利福尼亚州进行沿海实地研究,来自洛杉矶的对海洋生物感兴趣的本科生前往堪萨斯州学习生物统计学。为了帮助加州近年来遭受急剧下降的海藻森林的管理,将与海岸管理人员、保护从业者和其他利益攸关方共同举办研讨会,以确定修复地点,以加强区域恢复、稳定和弹性。该项目的目标是调查巨藻(Macrocystis Pyrifera)森林中同步性的模式和原因,以及对海岸生态系统结构和功能的影响。通过整合和利用大量长期、大规模的数据集,并用新的统计技术对它们进行分析,研究人员评估了海洋条件、海藻扩散和海胆食草性如何相互作用,以构建过去36年来东北太平洋10度纬度地区巨型海藻种群的同步性和稳定性。新的小波建模工具和其他统计技术被用来量化同步的驱动因素以及它们如何跨地理、时间和时间尺度运行。利用20年珊瑚礁生物多样性的空间时间序列,将确定巨型海藻和其他因素如何通过“同步级联”在一个特殊的林下藻类群落中诱导同步性。此外,该团队还测试了巨型海带通过异地有机质(海带鱼)的运输和沉积跨越生态系统边界繁殖到沙滩的同步程度,以及这种空间补贴如何产生海滩无脊椎动物和滨鸟的自下而上的同步级联。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Micro‐scale geography of synchrony in a serpentine plant community
  • DOI:
    10.1111/1365-2745.13503
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    J. Walter;L. Hallett;Lawrence W. Sheppard;T. Anderson;Lei Zhao;R. Hobbs;K. Suding;D. Reuman
  • 通讯作者:
    J. Walter;L. Hallett;Lawrence W. Sheppard;T. Anderson;Lei Zhao;R. Hobbs;K. Suding;D. Reuman
Stable cooperation emerges in stochastic multiplicative growth
随机乘法增长中出现稳定合作
  • DOI:
    10.1103/physreve.108.l012401
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Fant, Lorenzo;Mazzarisi, Onofrio;Panizon, Emanuele;Grilli, Jacopo
  • 通讯作者:
    Grilli, Jacopo
Preferential allocation of benefits and resource competition among recipients allows coexistence of symbionts within hosts
受益者之间利益的优先分配和资源竞争允许宿主内共生体共存
  • DOI:
    10.1086/718643
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ghosh, Shyamolina;Reuman, Daniel;Bever, James D.
  • 通讯作者:
    Bever, James D.
The effects of dispersal on spatial synchrony in metapopulations differ by timescale
分散对集合种群空间同步的影响因时间尺度而异
  • DOI:
    10.1111/oik.08298
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Mingyu Luo;Daniel C. Reuman;Lauren M. Hallett;Lauren Shoemaker;Lei Zhao;Max C. N. Castorani;Joan C. Dudney;Laureano A. Gherardi;Andrew L. Rypel;Lawrence W. Sheppard;Jonathan A. Walter;Shaopeng Wang
  • 通讯作者:
    Shaopeng Wang
Species relationships in the extremes and their influence on community stability
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Reuman其他文献

Asymmetric relationships and their effects on coexistence
不对称关系及其对共存的影响
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Albert;Daniel Reuman
  • 通讯作者:
    Daniel Reuman
Stabilizing effects of biodiversity arise from species-specific dynamics rather than interspecific interactions in grasslands
生物多样性的稳定效应源于物种特定的动态,而非草原中的种间相互作用。
  • DOI:
    10.1038/s41559-025-02787-4
  • 发表时间:
    2025-07-11
  • 期刊:
  • 影响因子:
    14.500
  • 作者:
    Bo Meng;Mingyu Luo;Michel Loreau;Pubin Hong;Dylan Craven;Nico Eisenhauer;Forest Isbell;Maowei Liang;Daniel Reuman;Brian Wilsey;Jasper van Ruijven;Lei Zhao;Shaopeng Wang
  • 通讯作者:
    Shaopeng Wang

Daniel Reuman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Reuman', 18)}}的其他基金

Collaborative Research: Modeling and Inference for Spatiotemporal Climate Impacts on Complex Ecosystems
合作研究:时空气候对复杂生态系统影响的建模和推断
  • 批准号:
    1714195
  • 财政年份:
    2017
  • 资助金额:
    $ 35.86万
  • 项目类别:
    Standard Grant
Predictable feedbacks between warming, community structure and ecosystem functioning: a combined experimental and theoretical approach
变暖、群落结构和生态系统功能之间的可预测反馈:实验和理论相结合的方法
  • 批准号:
    NE/H020705/1
  • 财政年份:
    2010
  • 资助金额:
    $ 35.86万
  • 项目类别:
    Research Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328117
  • 财政年份:
    2024
  • 资助金额:
    $ 35.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
  • 批准号:
    2341950
  • 财政年份:
    2024
  • 资助金额:
    $ 35.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328119
  • 财政年份:
    2024
  • 资助金额:
    $ 35.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Linking carbon preferences and competition to predict and test patterns of functional diversity in soil microbial communities
合作研究:将碳偏好和竞争联系起来,预测和测试土壤微生物群落功能多样性的模式
  • 批准号:
    2312302
  • 财政年份:
    2024
  • 资助金额:
    $ 35.86万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
  • 批准号:
    2327892
  • 财政年份:
    2024
  • 资助金额:
    $ 35.86万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
  • 批准号:
    2327893
  • 财政年份:
    2024
  • 资助金额:
    $ 35.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328118
  • 财政年份:
    2024
  • 资助金额:
    $ 35.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
  • 批准号:
    2341951
  • 财政年份:
    2024
  • 资助金额:
    $ 35.86万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of irregular small-scale topography on large-scale circulation patterns
合作研究:不规则小尺度地形对大尺度环流格局的影响
  • 批准号:
    2241626
  • 财政年份:
    2023
  • 资助金额:
    $ 35.86万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of irregular small-scale topography on large-scale circulation patterns
合作研究:不规则小尺度地形对大尺度环流格局的影响
  • 批准号:
    2241625
  • 财政年份:
    2023
  • 资助金额:
    $ 35.86万
  • 项目类别:
    Interagency Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了