Instabilities in Materials Science

材料科学中的不稳定性

基本信息

  • 批准号:
    1714287
  • 负责人:
  • 金额:
    $ 32.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

1714287Grabovsky The investigator and his collaborators study several important phenomena where the main underlying feature is instability, or extreme sensitivity to measurement errors, imperfections of shape, or load. Three projects, unified by the general idea of instability, are pursued. One of them deals with understanding instabilities in nonlinear elasticity associated with martensitic phase transitions, whereby sharp phase boundaries are observed experimentally. Such phase transitions are responsible for shape memory effects in alloys, and for a giant magnetostrictive effect exhibited by some materials, to name just a few examples. Another project applies new tools to analyze the extreme sensitivity to imperfections of the buckling stress of axially compressed circular cylindrical shells -- an essential structural component in a vast variety of structures, from grain silos to airplanes and space ships. The third project focuses on quantitative understanding of a well-known confluence of rigidity and flexibility -- a seemingly contradictory combination of properties -- of Herglotz functions that are ubiquitous in applications from materials science to nuclear physics. For example, the investigator's research quantifies the uncertainty due to experimental errors in the estimates of complex electromagnetic permittivity, which describes how a material interacts with electromagnetic waves of various frequencies from radio waves through visible light to gamma rays. This project constitutes Ph.D. research of a graduate student working under the investigator's guidance. The most salient feature in martensitic shape transformations, which in particular is responsible for shape memory effect, is the presence of phase boundaries -- sharp interfaces separating different martensitic variants. Stability of such phase boundaries can be completely characterized in terms of the concept of quasiconvexity. With the understanding that characterization of quasiconvexity is often regarded as unachievable, the investigator and his collaborators focus on eminently computable algebraic conditions of stability of phase boundaries and assess their "strength" through specific examples that show how far off algebraic conditions are from true answers, which could be computed either analytically or numerically. Another project deals with buckling of cylindrical shells -- one of the extensively studied, yet poorly understood problems in mechanics, where the classical formula cannot be used to predict buckling stress observed in experiments due to initial imperfections of load and shape. This project creates a mathematically rigorous theory of the buckling of slender bodies that is capable of explaining why initial imperfections of shape and load have strong influence on the buckling stress in some structures, while having negligible effect in others. The third project studies the somewhat paradoxical behavior of Herglotz functions, that are at the same time extremely rigid and surprisingly flexible. Its understanding contributes to several areas of mathematics and physics and answers many important questions. The problems of data validation, and extrapolation are addressed. This project constitutes Ph.D. research of the investigator's graduate student.
小行星1714287 研究人员和他的合作者研究了几个重要的现象,其中主要的基本特征是不稳定性,或对测量误差,形状缺陷或负载的极端敏感性。 三个项目,统一的不稳定性的一般思想,进行。 其中之一涉及理解与马氏体相变相关的非线性弹性的不稳定性,从而通过实验观察到尖锐的相边界。 这样的相变是合金中的形状记忆效应的原因,并且是一些材料所表现出的超磁致伸缩效应的原因,仅举几个例子。 另一个项目应用新的工具来分析轴向压缩圆柱壳的屈曲应力对缺陷的极端敏感性-这是从粮仓到飞机和宇宙飞船的各种结构中的重要结构部件。 第三个项目的重点是定量理解一个众所周知的刚性和柔性的汇合-一个看似矛盾的属性组合-从材料科学到核物理的应用中无处不在的Herglotz函数。 例如,研究人员的研究量化了由于复电磁介电常数估计中的实验误差而导致的不确定性,复电磁介电常数描述了材料如何与各种频率的电磁波相互作用,从无线电波到可见光再到伽马射线。 该项目是Ph.D.研究生在研究者的指导下进行的研究。 马氏体形状转变中最显著的特征,特别是形状记忆效应,是相边界的存在-分离不同马氏体变体的尖锐界面。 这种相界的稳定性可以完全用拟凸性的概念来描述。 由于了解到拟凸性的表征通常被认为是无法实现的,研究者和他的合作者专注于相边界稳定性的显著可计算代数条件,并通过具体的例子来评估它们的“强度”,这些例子表明代数条件离真实答案有多远,可以通过解析或数值计算来计算。 另一个项目涉及圆柱壳的屈曲--这是力学中广泛研究但了解甚少的问题之一,由于载荷和形状的初始缺陷,经典公式不能用于预测实验中观察到的屈曲应力。 该项目创建了一个数学上严格的细长体屈曲理论,能够解释为什么形状和载荷的初始缺陷对某些结构的屈曲应力有很大的影响,而对其他结构的影响可以忽略不计。 第三个项目研究了Herglotz函数的一些自相矛盾的行为,这些函数同时非常刚性和惊人的灵活性。 对它的理解有助于数学和物理的多个领域,并回答了许多重要问题。 数据验证和外推的问题得到解决。 该项目是Ph.D.研究员的研究生的研究。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Korn inequalities for shells with zero Gaussian curvature
高斯曲率为零的壳的 Korn 不等式
When Rank-One Convexity Meets Polyconvexity: An Algebraic Approach to Elastic Binodal
当一阶凸遇到多凸时:弹性二节线的代数方法
  • DOI:
    10.1007/s00332-018-9485-7
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Grabovsky, Yury;Truskinovsky, Lev
  • 通讯作者:
    Truskinovsky, Lev
Explicit power laws in analytic continuation problems via reproducing kernel Hilbert spaces
  • DOI:
    10.1088/1361-6420/ab5314
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Y. Grabovsky;N. Hovsepyan
  • 通讯作者:
    Y. Grabovsky;N. Hovsepyan
Higher regularity of uniform local minimizers in Calculus of Variations
变分法中均匀局部极小值的更高正则性
Explicit Relaxation of a Two-Well Hadamard Energy
两井 Hadamard 能量的显式弛豫
  • DOI:
    10.1007/s10659-018-09720-w
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Grabovsky, Yury;Truskinovsky, Lev
  • 通讯作者:
    Truskinovsky, Lev
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yury Grabovsky其他文献

On the Commutation Properties of Finite Convolution and Differential Operators I: Commutation.
  • DOI:
    10.1007/s00025-021-01411-8
  • 发表时间:
    2021-05-06
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Yury Grabovsky;Narek Hovsepyan
  • 通讯作者:
    Narek Hovsepyan
On the Commutation Properties of Finite Convolution and Differential Operators II: Sesquicommutation
  • DOI:
    10.1007/s00025-021-01412-7
  • 发表时间:
    2021-05-06
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Yury Grabovsky;Narek Hovsepyan
  • 通讯作者:
    Narek Hovsepyan
Composite Materials
  • DOI:
    10.1007/978-94-017-9780-1_100193
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yury Grabovsky
  • 通讯作者:
    Yury Grabovsky
On feasibility of extrapolation of completely monotone functions
完全单调函数外推的可行性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Henry J. Brown;Yury Grabovsky
  • 通讯作者:
    Yury Grabovsky
Exact Relations for Effective Tensors of Polycrystals. II. Applications to Elasticity and Piezoelectricity
多晶有效张量的精确关系。

Yury Grabovsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yury Grabovsky', 18)}}的其他基金

Study of Instabilities in Phase Transitions, Shell Buckling, and Inverse Problems
相变不稳定性、壳屈曲和反问题的研究
  • 批准号:
    2305832
  • 财政年份:
    2023
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Standard Grant
Energy-Driven Instabilities in Nonlinear Elasticity and Other Questions from Materials Science
非线性弹性中能量驱动的不稳定性以及材料科学中的其他问题
  • 批准号:
    2005538
  • 财政年份:
    2020
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Continuing Grant
Linear and non-linear elasticity: Study of exact relations and instabilities
线性和非线性弹性:精确关系和不稳定性的研究
  • 批准号:
    1412058
  • 财政年份:
    2014
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Standard Grant
Stability and macroscopic properties of heterogeneous media
异质介质的稳定性和宏观特性
  • 批准号:
    1008092
  • 财政年份:
    2010
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Continuing Grant
Systematic study of instabilities in non-linear elasticity and martensitic phase transformations
非线性弹性和马氏体相变不稳定性的系统研究
  • 批准号:
    0707582
  • 财政年份:
    2007
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Standard Grant
Macroscopic Properties of Heterogeneous Media and Development of the Applied Mathematics Curriculum
异质介质的宏观性质与应用数学课程的开发
  • 批准号:
    0094089
  • 财政年份:
    2001
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Continuing Grant
Topology Optimization and Effective Properties of Composites
复合材料的拓扑优化和有效性能
  • 批准号:
    0096133
  • 财政年份:
    1999
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Standard Grant
Topology Optimization and Effective Properties of Composites
复合材料的拓扑优化和有效性能
  • 批准号:
    9704813
  • 财政年份:
    1997
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Standard Grant

相似国自然基金

Journal of Materials Science & Technology
  • 批准号:
    51024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Standard Grant
Conference: Polymeric Materials: Science and Engineering Division Centennial Celebration at the Spring 2024 American Chemical Society Meeting
会议:高分子材料:美国化学会 2024 年春季会议科学与工程部百年庆典
  • 批准号:
    2415569
  • 财政年份:
    2024
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321103
  • 财政年份:
    2024
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Standard Grant
Quantum Simulation: A New Era for Materials Science
量子模拟:材料科学的新时代
  • 批准号:
    10107055
  • 财政年份:
    2024
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Small Business Research Initiative
FMRG: Cyber: Manufacturing USA: Material-on-demand manufacturing through convergence of manufacturing, AI and materials science
FMRG:网络:美国制造:通过制造、人工智能和材料科学的融合实现按需制造材料
  • 批准号:
    2328395
  • 财政年份:
    2024
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321104
  • 财政年份:
    2024
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Standard Grant
Diamane: A New Frontier in Materials Science
钻石烷:材料科学的新前沿
  • 批准号:
    DP230100542
  • 财政年份:
    2023
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Discovery Projects
NMR at 1.2 GHz: A World-Leading UK Facility to Deliver Advances in Biology, Chemistry, and Materials Science
1.2 GHz NMR:世界领先的英国设施,推动生物学、化学和材料科学的进步
  • 批准号:
    EP/X019764/1
  • 财政年份:
    2023
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Research Grant
NMR at 1.2 GHz: A World-Leading UK Facility to Deliver Advances in Biology, Chemistry, and Materials Science
1.2 GHz NMR:世界领先的英国设施,推动生物学、化学和材料科学的进步
  • 批准号:
    EP/X019853/1
  • 财政年份:
    2023
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了