FMRG: Cyber: Manufacturing USA: Material-on-demand manufacturing through convergence of manufacturing, AI and materials science

FMRG:网络:美国制造:通过制造、人工智能和材料科学的融合实现按需制造材料

基本信息

项目摘要

Recent advances in AI are driving an industrial revolution, leading to the emergence of intelligent, autonomous systems. This Future CyberManufacturing research grant reimagines autonomy for a new generation of manufacturing machines, capable the manufacture of advanced alloy products with unprecedented performance affordably. The project brings together a diverse team of pioneers from academia and the industry in AI (including machine learning, adaptive control, and data science), materials science, and smart manufacturing, towards addressing the foundational research and skill development. The team includes Texas A&M University/Texas A&M Engineering Experiment Station, Brown University, Texas A&M University Kingsville, Prairie View A&M University, Houston Community College, and multiple industry, regional government, and academic partners. These foundations allow a new approach and demonstration platforms to harness recent advances in 3D printing, materials genomics, and sensor technologies to control the production processes and to mix multiple materials to obtain the desired properties. These products provide a critical competitive edge for the US economy and effective solutions for the national critical material challenges in the strategic hypersonic systems and energy conversion sectors. It will also provide students and industry professionals with opportunities for valuable education and skill development.The project tackles scientific challenges of realizing futuristic manufacturing machines endowed with a deep level of autonomy to make tailored materials-on-demand manufacturing. The autonomous manufacturing machine platforms are envisioned to generate process plans adaptively (fusing information from diverse data and knowledge sources) – to control material microstructure and composition beyond just geometry and morphology – to yield bulk-scale tailored material components with dramatically enhanced functional performance. The following four foundational contributions to autonomy principles would emerge from this effort: (1) Shape-constrained machine learning. The key idea in this novel form of physics-informed machine learning is to introduce constraints on the shape/sign of the underlying functional relationship to model incomplete physical and experiential knowledge. (2) Harness surprise observations. A surprise outcome from an experiment or a process has historically led to new discoveries and insights. Dealing with surprising observations differentiates an autonomous system from an automated one. (3) Safeguarding extrapolation using digital twins. The principles of fusing physical systems with multiple digital twins would be developed, each capturing certain physics with a specified fidelity. (4) Knowledge expansion. New approaches would be studied to capture experiential and deep knowledge in the public manufacturing literature/databases on process chains and the dynamic process-material relationships via innovative graph neural networks. These approaches will be validated to discover innovate new pathways to manufacture high-entropy alloys that retain strengths above 1400°C, demonstrating improved machinability and reduced use of expensive and scarce materials. The project would provide hands-on training and education, leveraging their expertise and collaborations with national Manufacturing USA, industry, and education networks.This Future Manufacturing research is supported by the Computer and Information Science and Engineering Directorate's Division of Computer and Network Systems (CISE/CNS), the Engineering Directorate's Division of Civil, Mechanical and Manufacturing Innovation (ENG/CMMI), the Engineering Directorate's Division Engineering Education and Centers (ENG/EEC), the Mathematical and Physical Sciences Directorate's Division of Mathematical Sciences (MPS/DMS), and the Technology, Innovation and Partnerships Directorate's Translational Impacts Division (TIP/TI).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能的最新进展正在推动一场工业革命,导致智能自主系统的出现。这项未来网络制造研究资助重新设想了新一代制造机器的自主性,能够制造具有前所未有的性能负担能力的先进合金产品。该项目汇集了来自学术界和人工智能(包括机器学习,自适应控制和数据科学),材料科学和智能制造行业的不同先驱团队,致力于基础研究和技能开发。该团队包括得克萨斯A M大学/得克萨斯A M工程实验站,布朗大学,得克萨斯A M大学金斯维尔,草原视图A M大学,休斯顿社区学院,以及多个行业,地区政府和学术合作伙伴。这些基础允许一种新的方法和演示平台,利用3D打印,材料基因组学和传感器技术的最新进展来控制生产过程并混合多种材料以获得所需的特性。这些产品为美国经济提供了关键的竞争优势,并为战略高超音速系统和能源转换领域的国家关键材料挑战提供了有效的解决方案。该项目还将为学生和行业专业人士提供宝贵的教育和技能发展机会。该项目解决了实现未来制造机器的科学挑战,这些机器具有高度的自主性,可以按需定制材料制造。自主制造机器平台被设想为自适应地生成工艺计划(融合来自不同数据和知识源的信息)-控制材料的微观结构和成分,而不仅仅是几何形状和形态-生产具有显著增强的功能性能的大规模定制材料组件。以下四个对自治原则的基本贡献将从这一努力中产生:(1)形状约束机器学习。这种新形式的物理信息机器学习的关键思想是对底层函数关系的形状/符号引入约束,以模拟不完整的物理和经验知识。(2)令人惊讶的观察。从历史上看,实验或过程的意外结果会导致新的发现和见解。处理令人惊讶的观察结果将自主系统与自动系统区分开来。(3)使用数字孪生子保护外推。将物理系统与多个数字孪生体融合的原理将被开发出来,每个数字孪生体都以特定的保真度捕捉特定的物理学。(4)知识扩展。将研究新的方法,通过创新的图形神经网络,从公共制造业文献/数据库中获取关于工艺链和动态工艺-材料关系的经验和深入知识。这些方法将被验证,以发现创新的新途径来制造高熵合金,保持1400°C以上的强度,证明改善机械加工性和减少昂贵和稀缺材料的使用。该项目将提供实践培训和教育,利用他们的专业知识和与国家制造美国,工业和教育网络的合作。(CISE/CNS),工程理事会的土木,机械和制造创新部门(ENG/CMMI),工程理事会的工程教育和中心(ENG/EEC),数学和物理科学理事会的数学科学部(MPS/DMS),以及技术,创新与合作理事会的翻译影响部(TIP/TI)。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Panganamala Kumar其他文献

Panganamala Kumar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Panganamala Kumar', 18)}}的其他基金

SII Planning: Theory, Practice and Reality of Spectrum
SII 规划:频谱的理论、实践和现实
  • 批准号:
    2037890
  • 财政年份:
    2020
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
ICN-WEN: Collaborative Research: SPLICE: Secure Predictive Low-Latency Information Centric Edge for Next Generation Wireless Networks
ICN-WEN:协作研究:SPLICE:下一代无线网络的安全预测低延迟信息中心边缘
  • 批准号:
    1719384
  • 财政年份:
    2017
  • 资助金额:
    $ 300万
  • 项目类别:
    Continuing Grant
CPS: Synergy: Collaborative Research: Holistic Control and Management of Industrial Wireless Processes
CPS:协同:协作研究:工业无线过程的整体控制和管理
  • 批准号:
    1646449
  • 财政年份:
    2016
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
EAGER: Cybermanufacturing: Design and analysis of a cyberphysical systems approach for custom manufacturing kiosks
EAGER:网络制造:定制制造信息亭的网络物理系统方法的设计和分析
  • 批准号:
    1547075
  • 财政年份:
    2015
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Leveraging Physical Layer Advances for the Next Generation Distributed Wireless Channel Access Protocols
NeTS:媒介:协作研究:利用物理层进步实现下一代分布式无线信道接入协议
  • 批准号:
    1302182
  • 财政年份:
    2013
  • 资助金额:
    $ 300万
  • 项目类别:
    Continuing Grant
CPS: Synergy: Collaborative Research: Boolean Microgrid
CPS:协同:协作研究:布尔微电网
  • 批准号:
    1239116
  • 财政年份:
    2012
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Architecture and Distributed Management for Reliable Mega-scale Smart Grids
CPS:中:协作研究:可靠的超大规模智能电网的架构和分布式管理
  • 批准号:
    1232601
  • 财政年份:
    2011
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
CPS: Small: Delays, Clocks, Timing and Reliability in Networked Control Systems: Theories, Protocols and Implementation
CPS:小:网络控制系统中的延迟、时钟、定时和可靠性:理论、协议和实现
  • 批准号:
    1232602
  • 财政年份:
    2011
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Architecture and Distributed Management for Reliable Mega-scale Smart Grids
CPS:中:协作研究:可靠的超大规模智能电网的架构和分布式管理
  • 批准号:
    1035340
  • 财政年份:
    2010
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
CPS: Small: Delays, Clocks, Timing and Reliability in Networked Control Systems: Theories, Protocols and Implementation
CPS:小:网络控制系统中的延迟、时钟、定时和可靠性:理论、协议和实现
  • 批准号:
    1035378
  • 财政年份:
    2010
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant

相似国自然基金

Cyber体系脆弱性仿真分析方法研究
  • 批准号:
    61403400
  • 批准年份:
    2014
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于复杂网络理论的Cyber体系效能仿真分析方法研究
  • 批准号:
    61374179
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
面向智能电网基础设施Cyber-Physical安全的自治愈基础理论研究
  • 批准号:
    61300132
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
Cyber攻击对国家关键基础设施级联失效影响建模仿真研究
  • 批准号:
    61174035
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
基于Cyber空间的体系脆弱性仿真分析方法研究
  • 批准号:
    61174156
  • 批准年份:
    2011
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

FMRG: Cyber: Manufacturing USA: NextG-Enabled Manufacturing of the Future (NextGEM)
FMRG:网络:美国制造:支持 NextG 的未来制造 (NextGEM)
  • 批准号:
    2328260
  • 财政年份:
    2024
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
FMRG: Cyber: Manufacturing USA: Manufacturing of Next-Generation Perovskite Semiconductors at Scale
FMRG:网络:美国制造:大规模制造下一代钙钛矿半导体
  • 批准号:
    2328010
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
FMRG: Cyber: Manufacturing USA: Exploiting Spatio-Temporal Interdependency Between Electrochemical Manufacturing and Power Grid to Optimize Flexibility and Sustainability
FMRG:网络:美国制造:利用电化学制造和电网之间的时空相互依赖性来优化灵活性和可持续性
  • 批准号:
    2328160
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
FMRG: Cyber: Cyber-Coordinated Analytical Framework for Multi-stage Distributed Future Manufacturing Systems
FMRG:网络:多阶段分布式未来制造系统的网络协调分析框架
  • 批准号:
    2412020
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
FMRG: Cyber: Scalable Precision Manufacturing of Programmable Polymer Nanoparticles Using Low-temperature Initiated Chemical Vapor Deposition Guided by Artificial Intelligence
FMRG:网络:利用人工智能引导的低温引发化学气相沉积进行可编程聚合物纳米粒子的可扩展精密制造
  • 批准号:
    2229092
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
FMRG: Cyber: Manufacturing USA: Cyber-Enabled, High-Throughput Manufacturing of Multi-Material, 3D Nanostructures
FMRG:网络:美国制造:网络支持的多材料、3D 纳米结构的高通量制造
  • 批准号:
    2229036
  • 财政年份:
    2022
  • 资助金额:
    $ 300万
  • 项目类别:
    Continuing Grant
FMRG: Eco: Cyber Enabled Transformation to Circular Supply Chains for Sustainable Pharmaceutical Manufacturing Networks
FMRG:Eco:通过网络实现循环供应链转型,实现可持续药品制造网络
  • 批准号:
    2229250
  • 财政年份:
    2022
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
FMRG: Manufacturing USA: Cyber: Data-Driven Methods for Future Cyber Manufacturing as a Service
FMRG:美国制造:网络:未来网络制造即服务的数据驱动方法
  • 批准号:
    2229260
  • 财政年份:
    2022
  • 资助金额:
    $ 300万
  • 项目类别:
    Continuing Grant
FMRG: Cyber: Cyber-Coordinated Analytical Framework for Multi-stage Distributed Future Manufacturing Systems
FMRG:网络:多阶段分布式未来制造系统的网络协调分析框架
  • 批准号:
    2134409
  • 财政年份:
    2021
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
FMRG: Manufacturing USA: Cyber: Privacy-Preserving Tiny Machine Learning Edge Analytics to Enable AI-Commons for Secure Manufacturing
FMRG:美国制造业:网络:保护隐私的小型机器学习边缘分析,以实现 AI 共享以实现安全制造
  • 批准号:
    2134667
  • 财政年份:
    2021
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了