Physics of Correlated Disordered Packings
相关无序堆积物理
基本信息
- 批准号:1714722
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThe Division of Materials Research and the Division of Mathematical Sciences contribute funds to this award. It supports theoretical and computational research to further fundamental understanding of the structure and physics of new exotic states of amorphous matter called disordered hyperuniform many-body systems. In a precisely definable way, disordered hyperuniform systems lie between a crystal and a liquid. There is an increasing realization that such states of matter may play vital roles in various fundamental and applied problems, including: glass formation, jamming of granular media, rigidity, the nature of metallic and insulating electronic systems, localization of waves and excitations, self-organization, fluid dynamics, and quantum systems. The concept may be important in the fields of materials, mathematics, and biology. General objectives of this project include, but are not limited to: (i) identification and study of the physics of new types of disordered hyperuniform packings with tailored scattering functions; (ii) formulation of new ways to measure organization and to characterize these spatially correlated packings; (iii) and computation of their transport, optical, chemical and mechanical properties and exploration of the extent to which these characteristics are optimal. Statistical mechanics, including both theoretical and computational techniques, will be among the formal tools the PI will use to carry out the research. This project may lead to new fundamental insights into the nature of disordered hyperuniform systems and the formulation of overarching principles that link diverse forms of these exotic states of amorphous matter. This research may lead to an ability to control, tune and ultimately design new materials with novel physical properties. There is potential to provide guidance to experimentalists to fabricate optimized disordered hyperuniform materials, including via 3D printing techniques.TECHNICAL SUMMARYThe Division of Materials Research and the Division of Mathematical Sciences contribute funds to this award. It supports theoretical and computational research to further our fundamental understanding of the structure and physics of new exotic states of amorphous matter called disordered hyperuniform many-body systems. Disordered hyperuniform materials are singular states of matter that behave more like crystals in the way they suppress density fluctuations over long distances, and yet also resemble traditional isotropic liquids and glasses with no Bragg peaks. Such states may play vital roles in various fundamental and applied problems: glass formation, jamming, rigidity, band and gap structure, localization of waves and excitations, self-organization, fluid dynamics, quantum systems, pure mathematics, and biology. A unified theory of disordered hyperuniform systems poses a fundamental conceptual challenge due the fact that they come in seemingly disparate equilibrium and nonequilibrium varieties as either classical or quantum-mechanical states. To make this challenging task more manageable, the proposed research is directed toward developing a foundational theory to understand the structure and physics of disordered hyperuniform packings. Some of the general objectives of this project include, but are not limited to the following: (i) identification and study of the physics of new types of disordered hyperuniform packings with tailored scattering functions; (ii) formulation of new order metrics to characterize these strongly spatially correlated packings; (iii) and computation of their transport, optical, chemical and mechanical properties and exploration of the extent to which these characteristics are optimal. This will be accomplished by using statistical mechanics, including theoretical and computational techniques. This project is aimed to lead to new fundamental insights into the nature of disordered hyperuniform systems and the formulation of overarching principles that link diverse forms of these exotic states of strongly correlated amorphous matter. The conditions and mechanisms that drive either equilibrium or nonequilibrium systems to be disordered and hyperuniform will be elucidated. The findings will aid in categorizing the growing diverse instances of these amorphous states. A natural byproduct of this project will be a deeper understanding of the nature of disorder and order in many-body systems. This research may contribute to the ability to control, tune and ultimately design new materials with novel physical properties. The research is intended to have the far-reaching benefit of providing guidance to experimentalists to fabricate optimized disordered hyperuniform materials, including via 3D printing techniques.
非技术总结材料研究部和数学科学部为该奖项提供资金。它支持理论和计算研究,以进一步基本了解称为无序超均匀多体系统的无定形物质的新奇异状态的结构和物理。无序超均匀系统以一种可精确定义的方式介于晶体和液体之间。 人们越来越认识到,这种物质状态可能在各种基础和应用问题中发挥重要作用,包括:玻璃形成,颗粒介质的堵塞,刚性,金属和绝缘电子系统的性质,波和激发的局部化,自组织,流体动力学和量子系统。这个概念在材料、数学和生物学领域可能很重要。该项目的总目标包括但不限于:(一)识别和研究具有定制散射函数的新型无序超均匀填料的物理学;(二)制定新的方法来测量组织和表征这些空间相关填料;(iii)计算其传输、光学、化学和机械特性,并探索这些特性的最佳程度。统计力学,包括理论和计算技术,将成为PI用于开展研究的正式工具之一。这个项目可能会导致新的基本见解无序超均匀系统的性质和制定的总体原则,连接这些异国情调的非晶物质状态的不同形式。这项研究可能会导致控制,调整和最终设计具有新物理特性的新材料的能力。有可能为实验人员提供指导,以制造优化的无序超均匀材料,包括通过3D打印技术。技术摘要材料研究部和数学科学部为该奖项提供资金。它支持理论和计算研究,以促进我们对无定形物质的新奇异状态(称为无序超均匀多体系统)的结构和物理的基本理解。无序超均匀材料是物质的奇异状态,其行为更像晶体,在长距离上抑制密度波动,但也类似于传统的各向同性液体和玻璃,没有布拉格峰。这种状态可能在各种基础和应用问题中发挥重要作用:玻璃形成,堵塞,刚性,带隙结构,波和激发的局部化,自组织,流体动力学,量子系统,纯数学和生物学。无序超均匀系统的统一理论构成了一个基本的概念挑战,因为它们以看似完全不同的平衡和非平衡形式出现,无论是经典状态还是量子力学状态。为了使这一具有挑战性的任务更易于管理,拟议的研究是针对发展一个基础理论,以了解无序超均匀填料的结构和物理。这个项目的一些一般目标包括但不限于以下内容:(一)识别和研究具有定制散射函数的新型无序超均匀填充的物理学;(二)制定新的有序度规,以表征这些强空间相关的填充;(iii)计算其传输、光学、化学和机械特性,并探索这些特性的最佳程度。这将通过使用统计力学(包括理论和计算技术)来实现。该项目旨在对无序超均匀系统的性质产生新的基本见解,并制定将这些强相关非晶物质的奇异状态的不同形式联系起来的总体原则。将阐明驱动平衡或非平衡系统无序和超均匀的条件和机制。这些发现将有助于对这些无定形状态的日益多样化的实例进行分类。这个项目的一个自然副产品将是对多体系统中无序和有序本质的更深入理解。这项研究可能有助于控制,调整和最终设计具有新物理特性的新材料。该研究旨在为实验人员提供指导,以制造优化的无序超均匀材料,包括通过3D打印技术。
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Swimming in circles can lead to exotic hyperuniform states of active living matter
- DOI:10.1073/pnas.2107276118
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:S. Torquato
- 通讯作者:S. Torquato
Hidden multiscale order in the primes
素数中隐藏的多尺度顺序
- DOI:10.1088/1751-8121/ab0588
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Torquato, Salvatore;Zhang, Ge;De Courcy-Ireland, Matthew
- 通讯作者:De Courcy-Ireland, Matthew
The structure factor of primes
素数的结构因子
- DOI:10.1088/1751-8121/aaa52a
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Zhang, G;Martelli, F;Torquato, S
- 通讯作者:Torquato, S
Disordered hyperuniformity in two-component nonadditive hard-disk plasmas
双组分非相加硬盘等离子体中的无序超均匀性
- DOI:10.1103/physreve.96.062126
- 发表时间:2017
- 期刊:
- 影响因子:2.4
- 作者:Lomba, Enrique;Weis, Jean-Jacques;Torquato, Salvatore
- 通讯作者:Torquato, Salvatore
Nearest-neighbor functions for disordered stealthy hyperuniform many-particle systems
- DOI:10.1088/1742-5468/abb8cb
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:T. M. Middlemas;S. Torquato
- 通讯作者:T. M. Middlemas;S. Torquato
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Salvatore Torquato其他文献
New duality relations for classical ground states.
经典基态的新对偶关系。
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:8.6
- 作者:
Salvatore Torquato;F. Stillinger - 通讯作者:
F. Stillinger
Toward the jamming threshold of sphere packings: Tunneled crystals
迈向球形填料的干扰阈值:隧道晶体
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Salvatore Torquato;F. Stillinger - 通讯作者:
F. Stillinger
Exactly solvable disordered sphere-packing model in arbitrary-dimensional Euclidean spaces.
任意维欧几里德空间中精确可解的无序球堆积模型。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Salvatore Torquato;F. Stillinger - 通讯作者:
F. Stillinger
Estimates of the optimal density of sphere packings in high dimensions
高维球体堆积最佳密度的估计
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
A. Scardicchio;F. Stillinger;Salvatore Torquato - 通讯作者:
Salvatore Torquato
Hard knock for thermodynamics
热力学遭遇了严峻挑战。
- DOI:
10.1038/35014711 - 发表时间:
2000-06-01 - 期刊:
- 影响因子:48.500
- 作者:
Salvatore Torquato - 通讯作者:
Salvatore Torquato
Salvatore Torquato的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Salvatore Torquato', 18)}}的其他基金
Designing Novel Tunable Colloids Via Inverse Statistical Mechanics
通过逆统计力学设计新型可调谐胶体
- 批准号:
2133179 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Designing Novel Tunable Colloids Via Inverse Statistical Mechanics
通过逆统计力学设计新型可调谐胶体
- 批准号:
1701843 - 财政年份:2017
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Jamming and Disorder in Hard-Particle Packings
硬颗粒填料中的堵塞和紊乱
- 批准号:
0312067 - 财政年份:2003
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Industry/University Cooperative Research Project: Effect of Microstructure on Conduction, Diffusion and Flow in Disordered Composite Media
产学合作研究项目:微观结构对无序复合介质中传导、扩散和流动的影响
- 批准号:
8514841 - 财政年份:1986
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Research Initiation: Statistical Mechanics of Heat Conduction in Inhomogeneous Materials
研究启动:非均质材料热传导统计力学
- 批准号:
8211966 - 财政年份:1982
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
相似海外基金
Novel measures of thermalization and time-evolution of strongly correlated, disordered, and topological systems by nonlinear THz spectroscopy
通过非线性太赫兹光谱测量强相关、无序和拓扑系统的热化和时间演化的新方法
- 批准号:
2226666 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Leveraging Correlated Traits to Identify Genetic Associations with Sleep Disordered Breathing
利用相关特征来识别与睡眠呼吸障碍的遗传关联
- 批准号:
9814425 - 财政年份:2019
- 资助金额:
$ 33万 - 项目类别:
Bath-Induced and Long-Range Interactions in Disordered Strongly Correlated Optical Lattices
无序强相关光学晶格中的浴诱导和长程相互作用
- 批准号:
1806307 - 财政年份:2018
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Development of VMC with the Wannier localized orbitals and its application to strongly correlated superconductivity in disordered systems
具有 Wannier 定域轨道的 VMC 的发展及其在无序系统中强关联超导中的应用
- 批准号:
17K05528 - 财政年份:2017
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Disordered Quantum Matter in Strongly Correlated Optical Lattices
强相关光学晶格中的无序量子物质
- 批准号:
1505468 - 财政年份:2015
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Spatial and Temporal Complexity in Disordered Strongly Correlated Electronic Systems
无序强相关电子系统中的时空复杂性
- 批准号:
1106187 - 财政年份:2011
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Thermoelectric and Thermal Transport in Disordered and Strongly Correlated Electron Systems
无序和强相关电子系统中的热电和热传输
- 批准号:
1006752 - 财政年份:2010
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Theory of disordered correlated electronic systems
无序相关电子系统理论
- 批准号:
382549-2009 - 财政年份:2009
- 资助金额:
$ 33万 - 项目类别:
University Undergraduate Student Research Awards
Properties of Strongly Correlated and Disordered Electronic Systems
强相关和无序电子系统的特性
- 批准号:
9975259 - 财政年份:1999
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Strongly Correlated and Disordered Fermi Systems
强相关且无序的费米系统
- 批准号:
9529138 - 财政年份:1996
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant