Particle Packing Problems
颗粒堆积问题
基本信息
- 批准号:1211087
- 负责人:
- 金额:$ 30.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2016-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award will support work on fundamental aspects of particle packing problems. There are many open questions that will be pursued. Can sphere packings with a diversity of density and disorder be identified in d-dimensional Euclidean space? What are the densest packings of spheres in dimension greater than three? What are the densest packings of nonspherical objects in two and three dimensions? Can random packings ever fill space more densely than ordered packings (implying disordered or ``glassy" ground states)? For non-tiling nonspherical particles, can an upper bound on the maximal density be derived that is always strictly less than unity? Specifically, the following seven general areas will be explored: (1) jammed sphere packings with anomalously low densities; (2) identification of growing length scales in the approach to the glass transition; (3) dense spheres packings in three-dimensional space with a size distribution; (4) jammed disordered polyhedron packings; (5) maximally dense packings of nonspherical particles; (6) maximally dense sphere packings in high dimensions; and (7) studies of jamming on the unit sphere in various space dimensions. Among other activities, this award will be used to support the research of graduate students seeking their Ph.D. degrees.Packing problems, such as how densely solid objects fill space, have fascinated people since the dawn of civilization, and continue to intrigue scientists because of their connection to a host of problems that arise in the physical sciences, mathematics, engineering and biology. While optimal packing problems are intimately related to solid states of condensed matter, disordered sphere packings have been employed to model the glassy state of matter and granular media. Dense packings of nonspherical particles in low dimensions are relevant to problems in materials science and biology. Sphere packings in high dimensions is of importance in communications theory. Pure mathematicians have a longstanding interest in packing problems. This is a multidisciplinary project that links the applied mathematics, statistical and condensed-matter physics, materials science, engineering, biology, communications, and pure mathematics communities. Important scientific advances and practical outcomes that could potentially emerge from the proposed research include a deeper understanding of the nature of low-temperature states of matter (e.g., crystal ground states, the glass transition and the mysterious occurrence of disordered ground states), granular media, mechanically stable low-weight network solids, identification of new alloy crystal structures and new high-pressure phases of matter, and insights concerning the manner in which biological cells or organelles pack.
该奖项将支持粒子堆积问题的基本方面的工作。有许多悬而未决的问题将继续探讨。在d维欧氏空间中,具有密度多样性和无序性的球填充能被识别吗?大于3维的球体的密排是什么?在二维和三维中,非球形物体的密度填充是什么?无规堆积能比有序堆积(意味着无序或“玻璃态”基态)更密集地填充空间吗?对于非平铺的非球形粒子,是否可以推导出最大密度的上界总是严格小于1?具体地说,将探讨以下七个一般领域:(1)具有异常低密度的堵塞球填料;(2)在接近玻璃化转变过程中的增长长度尺度的识别;(3)具有尺寸分布的三维空间中的致密球填料;(4)堵塞无序多面体填料;(5)非球形颗粒的最大致密填料;(6)高维空间中的最大稠密球填充;(7)不同空间维数下单位球上的干扰研究。除其他活动外,该奖项将用于支持攻读博士学位的研究生的研究。包装问题,如固体物体如何密集地填充空间,自文明之初就吸引了人们,并继续吸引科学家,因为它们与物理科学,数学,工程和生物学中出现的一系列问题有关。虽然最佳填充问题与凝聚态物质的固态密切相关,但无序球填充已被用于模拟物质和颗粒介质的玻璃态。低维非球形粒子的密集堆积与材料科学和生物学中的问题有关。高维球填充在通信理论中具有重要的意义。纯数学家对填充问题有着长期的兴趣。这是一个多学科的项目,链接应用数学,统计和凝聚态物理,材料科学,工程,生物学,通信和纯数学社区。拟议研究可能产生的重要科学进步和实际成果包括更深入地了解物质低温状态的性质(例如,晶体基态、玻璃化转变和无序基态的神秘发生)、颗粒介质、机械稳定的低重量网络固体、新合金晶体结构和物质新高压相的鉴定,以及关于生物细胞或细胞器包装方式的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Salvatore Torquato其他文献
New duality relations for classical ground states.
经典基态的新对偶关系。
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:8.6
- 作者:
Salvatore Torquato;F. Stillinger - 通讯作者:
F. Stillinger
Toward the jamming threshold of sphere packings: Tunneled crystals
迈向球形填料的干扰阈值:隧道晶体
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Salvatore Torquato;F. Stillinger - 通讯作者:
F. Stillinger
Exactly solvable disordered sphere-packing model in arbitrary-dimensional Euclidean spaces.
任意维欧几里德空间中精确可解的无序球堆积模型。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Salvatore Torquato;F. Stillinger - 通讯作者:
F. Stillinger
Estimates of the optimal density of sphere packings in high dimensions
高维球体堆积最佳密度的估计
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
A. Scardicchio;F. Stillinger;Salvatore Torquato - 通讯作者:
Salvatore Torquato
Hard knock for thermodynamics
热力学遭遇了严峻挑战。
- DOI:
10.1038/35014711 - 发表时间:
2000-06-01 - 期刊:
- 影响因子:48.500
- 作者:
Salvatore Torquato - 通讯作者:
Salvatore Torquato
Salvatore Torquato的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Salvatore Torquato', 18)}}的其他基金
Designing Novel Tunable Colloids Via Inverse Statistical Mechanics
通过逆统计力学设计新型可调谐胶体
- 批准号:
2133179 - 财政年份:2022
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
Physics of Correlated Disordered Packings
相关无序堆积物理
- 批准号:
1714722 - 财政年份:2017
- 资助金额:
$ 30.3万 - 项目类别:
Continuing Grant
Designing Novel Tunable Colloids Via Inverse Statistical Mechanics
通过逆统计力学设计新型可调谐胶体
- 批准号:
1701843 - 财政年份:2017
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
Jamming and Disorder in Hard-Particle Packings
硬颗粒填料中的堵塞和紊乱
- 批准号:
0312067 - 财政年份:2003
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
Industry/University Cooperative Research Project: Effect of Microstructure on Conduction, Diffusion and Flow in Disordered Composite Media
产学合作研究项目:微观结构对无序复合介质中传导、扩散和流动的影响
- 批准号:
8514841 - 财政年份:1986
- 资助金额:
$ 30.3万 - 项目类别:
Continuing Grant
Research Initiation: Statistical Mechanics of Heat Conduction in Inhomogeneous Materials
研究启动:非均质材料热传导统计力学
- 批准号:
8211966 - 财政年份:1982
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
相似国自然基金
等圆及长方体Packing与一般NP难度问题的高效能求解- - - - 拟物拟人算法
- 批准号:60773194
- 批准年份:2007
- 资助金额:27.0 万元
- 项目类别:面上项目
Circle Packing理论与正规族理论研究
- 批准号:10701084
- 批准年份:2007
- 资助金额:15.0 万元
- 项目类别:青年科学基金项目
矩形Packing基本问题的高性能求解算法
- 批准号:10471051
- 批准年份:2004
- 资助金额:17.0 万元
- 项目类别:面上项目
相似海外基金
4th International Conference on Packing Problems
第四届国际包装问题会议
- 批准号:
1926690 - 财政年份:2019
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
Approximation Algorithms for Combinatorial Optimization Problems with Packing Constraints
具有填充约束的组合优化问题的近似算法
- 批准号:
399223600 - 财政年份:2018
- 资助金额:
$ 30.3万 - 项目类别:
Research Grants
Construction Heuristics for three-dimensional packing problems
三维包装问题的构造启发式
- 批准号:
17K12981 - 财政年份:2017
- 资助金额:
$ 30.3万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Structural results and their application in scheduling and packing problems
结构结果及其在调度和打包问题中的应用
- 批准号:
335406402 - 财政年份:2017
- 资助金额:
$ 30.3万 - 项目类别:
Research Grants
Robust Online Algorithms for Scheduling and Packing Problems
用于调度和打包问题的强大在线算法
- 批准号:
320260044 - 财政年份:2016
- 资助金额:
$ 30.3万 - 项目类别:
Research Grants
Sharper, more meaningful bounds for bin packing, list update and other online problems
对于装箱、列表更新和其他在线问题,边界更清晰、更有意义
- 批准号:
471900-2015 - 财政年份:2016
- 资助金额:
$ 30.3万 - 项目类别:
Postdoctoral Fellowships
Sharper, more meaningful bounds for bin packing, list update and other online problems
对于装箱、列表更新和其他在线问题,边界更清晰、更有意义
- 批准号:
471900-2015 - 财政年份:2015
- 资助金额:
$ 30.3万 - 项目类别:
Postdoctoral Fellowships
Randomized approaches to combinatorial packing and covering problems
组合包装和覆盖问题的随机方法
- 批准号:
EP/M009408/1 - 财政年份:2015
- 资助金额:
$ 30.3万 - 项目类别:
Research Grant
Approximation algorithms for packing and network problems
打包和网络问题的近似算法
- 批准号:
227829-2009 - 财政年份:2014
- 资助金额:
$ 30.3万 - 项目类别:
Discovery Grants Program - Individual
Symplectic embeddings and packing maps, their contact analogues, and other classic symplectic problems
辛嵌入和堆积图、它们的接触类似物以及其他经典辛问题
- 批准号:
1211244 - 财政年份:2012
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant