Collaborative Research: Blood Clotting at the Extreme -- Mathematical and Experimental Investigation of Platelet Deposition in Stenotic Arteries

合作研究:极端血液凝固——狭窄动脉中血小板沉积的数学和实验研究

基本信息

  • 批准号:
    1715156
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

This project brings together mathematical and computational scientists and bioengineers to study the fundamental biophysical and biochemical mechanisms underlying the formation of blood clots within stenosed (constricted) arteries. These are the blood clots responsible for most heart attacks and many strokes, and understanding how they can form under the extreme physical conditions in a stenotic artery may lead to new ideas for how to prevent them. The very fast blood flow in severely stenosed arteries means that many of the well-studied processes responsible for blood clotting in more physiologically typical situations can play at most a minor role in these arteries. Recent experiments, including ones from the laboratory of one of the current investigators, suggest the importance of a specific flow-sensitive protein in the blood in allowing blood platelets to clump together to form a clot in stenotic arteries. This project involves incorporating the hypothesized role of this protein into a novel and sophisticated computational model of arterial blood clot formation, developed by this project's other investigators, and to use the expanded model to characterize the conditions under which that protein's known properties could explain clot formation in stenotic arteries. Through comparisons of the new model's predictions with further laboratory experiments, the model will be refined and its predictive capabilities improved, and our understanding of how blood clots form under the extreme physical conditions in stenotic arteries will be increased. Because the challenges of forming a blood clot under the conditions in a stenotic artery are similar to those of stanching hemorrhage from a major artery, understanding of how such clots form may also aid in development of interventions to limit bleeding following trauma.Most arterial blood clots are formed by the adhesion of blood cells known as platelets to an injured blood vessel wall and by platelets? cohesion to one another. Platelet adhesion and cohesion are both accomplished through the formation of molecular bonds that involve specific proteins on the platelets? surfaces binding to other specific proteins on the vascular wall or in the blood plasma. To hold the platelets together, the bonds must collectively be able to withstand the forces imposed on the platelet clump by the blood flow. For many types of platelet-platelet bonds, a platelet can form that type of bond only if the platelet has already become activated in response to appropriate chemical or physical stimuli. The platelet activation process takes time. For a platelet moving through a highly constricted artery, there is not enough time to respond to activation stimuli and the forces that the fluid exerts on it if it tries to attach to the vessel wall are enormous. How clots form in this situation is poorly understood, but recent experiments lead to the hypothesis that bonds mediated by a uniquely flow-sensitive protein (von Willebrand factor) in the blood are critical. This project will explore that hypothesis through a combination of mathematical modeling, computer simulation, and laboratory experimentation. A novel multiphase model will be developed of the mechanical interactions between a viscous fluid representing the blood and a permeable, viscoelastic, fracturable material representing a growing platelet clot. Development of robust and efficient numerical methods will allow exploration of the model?s behavior. Model results will be compared with results from an in vitro physical model of a stenotic artery. The comparison will lead to model refinements and to the design and interpretation of the physical experiments. Such interplay between modeling and experiments provides a powerful engine for driving scientific discovery.
该项目将数学和计算科学家以及生物工程师聚集在一起,研究狭窄(收缩)动脉内血栓形成的基本生物物理和生化机制。这些是导致大多数心脏病发作和许多中风的血块,了解它们是如何在狭窄动脉的极端物理条件下形成的,可能会为如何预防它们带来新的想法。在严重狭窄的动脉中,血液流动非常快,这意味着许多在生理上更典型的情况下负责血液凝固的过程,在这些动脉中最多只能发挥次要作用。最近的实验,包括一位现任研究人员的实验室的实验,表明血液中一种特定的流动敏感蛋白在允许血小板聚集在狭窄的动脉中形成凝块方面的重要性。这个项目包括将这种蛋白质的假设作用纳入一个由该项目的其他研究人员开发的新颖而复杂的动脉血栓形成计算模型中,并使用扩展模型来表征这种蛋白质的已知特性可以解释狭窄动脉血栓形成的条件。通过将新模型的预测与进一步的实验室实验进行比较,该模型将得到改进,其预测能力将得到提高,我们对狭窄动脉在极端物理条件下血栓形成的理解将会增加。由于在狭窄动脉中形成血栓的挑战与大动脉止血的挑战相似,因此了解血栓如何形成也有助于开发限制创伤后出血的干预措施。大多数动脉血栓是由被称为血小板的血细胞粘附到受伤的血管壁和血小板形成的。相互间的凝聚力。血小板的粘附和内聚都是通过血小板上特定蛋白质形成的分子键来完成的。与血管壁或血浆中其他特定蛋白质结合的表面。为了将血小板固定在一起,这些键必须能够共同承受血液流动对血小板团施加的力。对于许多类型的血小板-血小板键,只有当血小板在适当的化学或物理刺激下已经被激活时,血小板才能形成这种类型的键。血小板活化过程需要时间。对于在高度收缩的动脉中移动的血小板来说,没有足够的时间对激活刺激做出反应,而且如果血小板试图附着在血管壁上,液体对血小板施加的力是巨大的。在这种情况下凝块是如何形成的尚不清楚,但最近的实验提出了一种假设,即血液中一种独特的流动敏感蛋白(血管性血友病因子)介导的键是至关重要的。这个项目将通过结合数学建模、计算机模拟和实验室实验来探索这一假设。一个新的多相模型将被开发的机械相互作用之间的粘性流体代表血液和渗透性,粘弹性,断裂的材料代表不断增长的血小板凝块。稳健而有效的数值方法的发展将允许对模型的探索。年代的行为。模型结果将与体外狭窄动脉物理模型的结果进行比较。这种比较将导致模型的改进以及物理实验的设计和解释。这种模型和实验之间的相互作用为推动科学发现提供了强大的引擎。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computational investigation of platelet thrombus mechanics and stability in stenotic channels
  • DOI:
    10.1016/j.jbiomech.2021.110398
  • 发表时间:
    2021-04-29
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Du, Jian;Aspray, Elise;Fogelson, Aaron
  • 通讯作者:
    Fogelson, Aaron
Shear-induced platelet aggregation: 3D-grayscale microfluidics for repeatable and localized occlusive thrombosis
  • DOI:
    10.1063/1.5113508
  • 发表时间:
    2019-09-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Griffin, Michael T.;Kim, Dongjune;Ku, David N.
  • 通讯作者:
    Ku, David N.
Platelet α-granules are required for occlusive high-shear-rate thrombosis
  • DOI:
    10.1182/bloodadvances.2020002117
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Kim, Dongjune A.;Ashworth, Katrina J.;Ku, David N.
  • 通讯作者:
    Ku, David N.
Clot Permeability, Agonist Transport, and Platelet Binding Kinetics in Arterial Thrombosis
  • DOI:
    10.1016/j.bpj.2020.08.041
  • 发表时间:
    2020-11-17
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Du, Jian;Kim, Dongjune;Fogelson, Aaron L.
  • 通讯作者:
    Fogelson, Aaron L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jian Du其他文献

Heat-integrated water allocation network synthesis for industrial parks with sequential and simultaneous design
顺序同步设计工业园区热集成水分配网络综合
  • DOI:
    10.1016/j.compchemeng.2017.10.002
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Linlin Liu;Haodong Song;Lei Zhang;Jian Du
  • 通讯作者:
    Jian Du
Application of serum pharmacology in evaluating the antitumor effect of Fuzheng Yiliu Decoction from Chinese medicine
血清药理学在评价中药扶正抑瘤汤抗肿瘤作用中的应用
SG-CIM Model Verification and Validation Framework in Business Middle Platform
业务中台SG-CIM模型验证与验证框架
Optimal Design and Sizing of Solar-assisted CHP System Based on Thermodynamic and Economic Analysis
基于热力学和经济分析的太阳能辅助热电联产系统的优化设计和规模确定
  • DOI:
    10.3303/cet2081008
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fengyuan Wang;Yao Sheng;Linlin Liu;Lei Zhang;Yu Zhuang;Jian Du
  • 通讯作者:
    Jian Du
Direct work exchange networks synthesis of isothermal process based on superstructure method
基于超结构方法的等温过程直接功交换网络综合

Jian Du的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jian Du', 18)}}的其他基金

CAREER: Physical Causes of Multi-Scale Temporal Variability in Atmospheric Tides from the Troposphere to the Dynamo Region
职业:从对流层到发电机区域的大气潮汐多尺度时间变化的物理原因
  • 批准号:
    1453943
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CEDAR: Wave Coupling and its Role in the Momentum and Energy Budget of the Middle Atmosphere
CEDAR:波耦合及其在中层大气动量和能量收支中的作用
  • 批准号:
    1243019
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Modular, vascularized microphysiological systems to study the outer blood retinal barrier
合作研究:模块化、血管化的微生理系统研究外血视网膜屏障
  • 批准号:
    2225438
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Modular, vascularized microphysiological systems to study the outer blood retinal barrier
合作研究:模块化、血管化的微生理系统研究外血视网膜屏障
  • 批准号:
    2308628
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving the Performance and Design of Potentiometric Biosensors for the Detection of Extracellular Histones in Blood with Deep Learning
合作研究:利用深度学习改进用于检测血液中细胞外组蛋白的电位生物传感器的性能和设计
  • 批准号:
    2210335
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Spatiotemporal Fractional Modeling of Blood-Oxygen-Level Dependent Signals
合作研究:血氧水平相关信号的时空分数建模
  • 批准号:
    1936624
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Spatiotemporal Fractional Modeling of Blood-Oxygen-Level Dependent Signals
合作研究:血氧水平相关信号的时空分数建模
  • 批准号:
    1936578
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving the Performance and Design of Potentiometric Biosensors for the Detection of Extracellular Histones in Blood with Deep Learning
合作研究:利用深度学习改进用于检测血液中细胞外组蛋白的电位生物传感器的性能和设计
  • 批准号:
    1936793
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Wireless Magnetic Millibot Blood Clot Removal and Navigation in 3-D Printed Patient-Specific Phantoms using Echocardiography
CPS:中:合作研究:使用超声心动图在 3D 打印的患者特异性体模中进行无线磁性 Millibot 血凝块去除和导航
  • 批准号:
    1932572
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-Scale Models and Quantitative Experiments of Red Blood Cells Transmigration through Inter-Endothelial Slits in the Spleen
合作研究:红细胞通过脾脏内皮间缝隙迁移的多尺度模型和定量实验
  • 批准号:
    1948347
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Wireless Magnetic Millibot Blood Clot Removal and Navigation in 3-D Printed Patient-Specific Phantoms using Echocardiography
CPS:中:合作研究:使用超声心动图在 3D 打印的患者特异性体模中进行无线磁性 Millibot 血凝块去除和导航
  • 批准号:
    1931884
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving the Performance and Design of Potentiometric Biosensors for the Detection of Extracellular Histones in Blood with Deep Learning
合作研究:利用深度学习改进用于检测血液中细胞外组蛋白的电位生物传感器的性能和设计
  • 批准号:
    1936772
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了