Collaborative Research: Improving the Performance and Design of Potentiometric Biosensors for the Detection of Extracellular Histones in Blood with Deep Learning

合作研究:利用深度学习改进用于检测血液中细胞外组蛋白的电位生物传感器的性能和设计

基本信息

  • 批准号:
    1936772
  • 负责人:
  • 金额:
    $ 47.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Point of care (POC) sensors aim to provide patients and medical practitioners with diagnostic information when and where it is needed. Potentiometric biosensors, which output a voltage as a function of target biomolecule concentration, are ideally suited for POC use in which sensitivity, speed of detection, portability and compatibility with low-power read-out circuitry are all paramount. Unfortunately, most demonstrations of such sensors stall during the translation from testing well-controlled laboratory solutions to operating in serum or whole blood. The objective of this research is to overcome this hurdle by using a class of advanced artificial intelligence techniques known as Deep Learning to recognize patterns and relationships in the complex data that is collected from blood-based tests to improve sensitivity and drive the design optimization of these sensors. This approach will be applied to the detection of circulating histones in blood, which contribute to the development of Multiple Organ Dysfunction Syndrome (MODS) in critically ill patients. It is estimated that 15% of all intensive care unit (ICU) admissions in the United States result in MODS, costing the healthcare system billions of dollars. Currently, there is no biomarker to identify those patients at increased risk of MODS. The successful development of the proposed Deep Learning-enhanced histone sensor will allow for the early identification of patients that will benefit from more aggressive and targeted therapies to prevent MODS and related complications. These concepts will be integrated with wearable device challenges for high school students, and data will also be included in undergraduate and graduate curricula.The proposed research consists of answering the following scientific and engineering questions: (1) What is the conventional limit of detection and speed of response of RNA aptamer-functionalized potentiometers to circulating histones? RNA aptamers specific to histones will be used to functionalize gold sensing electrodes to establish, for the first time, the limit of detection and speed of response of extended gate potentiometers capable of early identification of MODS. These devices will be evaluated in buffer, serum and whole blood as benchmarks for POC deployment. (2) How can Deep Learning improve the performance of potentiometric biosensors beyond their conventional limits when assessing whole blood? Potentiometric biosensor performance relies on several factors (e.g., electrode choice, surface functionalization, sample type, etc.), which make their translation to blood analysis a major challenge. We will leverage deep learning techniques to reveal intricate relationships and trends to compensate for the conventional losses in sensitivity observed in blood-based tests. These findings will also drive the optimal design of the potentiometric sensors, thus establishing design rules that can accelerate the development of these sensors across the community. (3) What is the optimal method to develop training data for deep learning? A major obstacle to the application of Machine/Deep Learning techniques to biosensing is the generation of adequate training data. A multiplexed potentiometric biosensing platform, made possible by the use of the extended gate approach, will be developed in order to identify time- and resource-efficient approaches to algorithm training. This effort will establish a standardized protocol that other researchers in the field can leverage in order to accelerate the adoption of potentiometric biosensors in new applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
护理点(POC)传感器旨在为患者和医疗从业者提供诊断信息,无论何时何地。输出作为目标生物分子浓度的函数的电压的电位生物传感器理想地适用于POC用途,其中灵敏度、检测速度、便携性和与低功率读出电路的兼容性都是至关重要的。不幸的是,这种传感器的大多数演示在从测试控制良好的实验室溶液到在血清或全血中操作的转换期间停止。这项研究的目的是通过使用一类称为深度学习的先进人工智能技术来克服这一障碍,以识别从血液测试中收集的复杂数据中的模式和关系,以提高灵敏度并推动这些传感器的设计优化。这种方法将被应用于检测血液中的循环组蛋白,这有助于危重患者多器官功能障碍综合征(MODS)的发展。据估计,美国所有重症监护病房(ICU)入院的15%导致MODS,花费医疗保健系统数十亿美元。目前,没有生物标志物来识别MODS风险增加的患者。拟议的深度学习增强型组蛋白传感器的成功开发将允许早期识别患者,这些患者将受益于更积极和有针对性的治疗,以预防MODS和相关并发症。这些概念将与高中生的可穿戴设备挑战相结合,数据也将被纳入本科和研究生课程。拟议的研究包括回答以下科学和工程问题:(1)RNA适体功能化电位计对循环组蛋白的常规检测极限和响应速度是什么?组蛋白特异性RNA适体将用于功能化金传感电极,以首次建立能够早期识别MODS的扩展门电位计的检测限和响应速度。将在缓冲液、血清和全血中评价这些器械,作为POC展开的基准。(2)深度学习如何提高电位生物传感器在评估全血时的性能,使其超出传统限制?电位生物传感器的性能依赖于几个因素(例如,电极选择、表面功能化、样品类型等),这使得将其转化为血液分析成为一个重大挑战。我们将利用深度学习技术来揭示复杂的关系和趋势,以弥补在基于血液的测试中观察到的传统灵敏度损失。这些发现还将推动电位传感器的最佳设计,从而建立设计规则,加速这些传感器在整个社区的发展。(3)开发深度学习训练数据的最佳方法是什么?将机器/深度学习技术应用于生物传感的主要障碍是生成足够的训练数据。将开发一个多路复用电位生物传感平台,通过使用扩展门的方法,以确定时间和资源有效的方法,算法训练。这一努力将建立一个标准化的协议,该领域的其他研究人员可以利用,以加快采用电位生物传感器在新的应用。这一奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characterization of Aptamer Functionalized Gold Electrodes for Histone Detection
用于组蛋白检测的适体功能化金电极的表征
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richardson, H.;Barahona, J.;Carter, G.;Miller, F. J.;Lobaton, E.;Pavlidis, S.
  • 通讯作者:
    Pavlidis, S.
Toward Subcutaneous Electrochemical Aptasensors for Neuropeptide Y
神经肽 Y 的皮下电化学适体传感器
  • DOI:
    10.1109/sensors47087.2021.9639832
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richardson, Hayley;Maddocks, Grace;Peterson, Kaila;Daniele, Michael;Pavlidis, Spyridon
  • 通讯作者:
    Pavlidis, Spyridon
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Spyridon Pavlidis其他文献

Spyridon Pavlidis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Spyridon Pavlidis', 18)}}的其他基金

CAREER: Engineering Ultra-Wide Bandgap III-Nitride Devices for Highly Efficient and Robust Electronics
职业:设计超宽带隙 III 族氮化物器件,实现高效、稳健的电子产品
  • 批准号:
    2145340
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
EAGER: RF Switches Using 2D Phase Change Materials
EAGER:使用 2D 相变材料的射频开关
  • 批准号:
    1843395
  • 财政年份:
    2018
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
NSF East Asia and Pacific Summer Institute (EAPSI) for FY 2013 in Taiwan
2013 财年 NSF 东亚及太平洋暑期学院 (EAPSI) 在台湾
  • 批准号:
    1316882
  • 财政年份:
    2013
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Fellowship Award

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Improving Upper Division Physics Education and Strengthening Student Research Opportunities at 14 HSIs in California
合作研究:改善加州 14 所 HSI 的高年级物理教育并加强学生研究机会
  • 批准号:
    2345092
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Upper Division Physics Education and Strengthening Student Research Opportunities at 14 HSIs in California
合作研究:改善加州 14 所 HSI 的高年级物理教育并加强学生研究机会
  • 批准号:
    2345093
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
SBP: Collaborative Research: Improving Engagement with Professional Development Programs by Attending to Teachers' Psychosocial Experiences
SBP:协作研究:通过关注教师的社会心理体验来提高对专业发展计划的参与度
  • 批准号:
    2314254
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Worker Safety by Understanding Risk Compensation as a Latent Precursor of At-risk Decisions
合作研究:通过了解风险补偿作为风险决策的潜在前兆来提高工人安全
  • 批准号:
    2326937
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Improving Model Representations of Antarctic Ice-shelf Instability and Break-up due to Surface Meltwater Processes
合作研究:改进地表融水过程导致的南极冰架不稳定和破裂的模型表示
  • 批准号:
    2213704
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Measuring, Validating and Improving upon App-Based Privacy Nutrition Labels
合作研究:SaTC:核心:小型:测量、验证和改进基于应用程序的隐私营养标签
  • 批准号:
    2247952
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Reducing Model Uncertainty by Improving Understanding of Pacific Meridional Climate Structure during Past Warm Intervals
合作研究:通过提高对过去温暖时期太平洋经向气候结构的理解来降低模型不确定性
  • 批准号:
    2303568
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SitS: Improving Rice Cultivation by Observing Dynamic Soil Chemical Processes from Grain to Landscape Scales
合作研究:SitS:通过观察从谷物到景观尺度的动态土壤化学过程来改善水稻种植
  • 批准号:
    2226647
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SitS: Improving Rice Cultivation by Observing Dynamic Soil Chemical Processes from Grain to Landscape Scales
合作研究:SitS:通过观察从谷物到景观尺度的动态土壤化学过程来改善水稻种植
  • 批准号:
    2226648
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
  • 批准号:
    2306660
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了