Multiscale Stochastic Computation of Natural Frequencies for Beams Made of Metal Foam Based on Stochastic Geometry Models

基于随机几何模型的泡沫金属梁固有频率的多尺度随机计算

基本信息

项目摘要

Aim of the project is to develop a multiscale stochastic computation method which, starting from CT geometry data, allows for the determination of natural frequencies of beams made of metal foam as far as possible without ad hoc assumptions. To this end, the computation method developed by the applicants is extended and modified.With regard to the stochastic modeling of the microstructure geometry, the goal is to develop a statistical model fitting technique which avoids a prior selection of a tessellation model. For this purpose, a Laguerre tessellation is reconstructed from the cell system of the foam using a suitable distance measure. The set of generators of this tessellation is interpreted as a marked point process. Using classical point process statistics, a model is fit to this point process. The Laguerre tessellation of model realizations then provides three-dimensional samples of the microstructure geometry. The distance measure used in the model fitting steps has to be chosen such that both the geometrical characteristics of the structure as well as the material properties are reproduced correctly.By means of the geometry samples, boundary effect independent properties of the apparent material parameters are determined. For this purpose, by introduction of an additional length scale a difference is made between the volume element on which the boundary conditions are applied, and the volume element, over which stresses and strains are averaged. This allows to obtain boundary effect independent histograms of the one-dimensional marginal distributions and estimates of the autocorrelation function of material parameters. Using these data, a random field is modeled without assuming a distribution class for the marginal distributions. The goal is to develop a novel approach that starts from the truncated Karhunen-Loève expansion of the random field and generates iteratively realizations of the non-Gaussian random variables contained in the expansion. This approach offers the advantage that the random variables enter linearly in the Stochastic-FE-formulation of the eigenvalue problem for the determination of the natural frequencies, which facilitates a non-intrusive solution of the FE problem.Another goal of the project is the statistical description and the modeling of the occurrence of special inhomogeneities such as variable strut thickness distribution and defects in order to better understand the effect of the combination of these effects on the structural behavior.The developed computation method is validated step by step by means of sample images and results of experimental modal analysis.Another major objective of the proposed approach is to gain insights that are also transferable for the modeling of other heterogeneous materials. This applies particularly to the investigations of the generator set and of the boundary effect independent properties of apparent material parameters as well as to the random field modeling.
该项目的目的是开发一种多尺度随机计算方法,从CT几何数据开始,允许尽可能确定由金属泡沫制成的梁的固有频率,而无需特别假设。为此,对申请人开发的计算方法进行了扩展和修改。对于微观结构几何形状的随机建模,目标是开发一种统计模型拟合技术,避免事先选择镶嵌模型。为此,使用合适的距离测量从泡沫的单元系统重建拉盖尔镶嵌。 该镶嵌的生成器的集合被解释为标记点过程。利用经典的点过程统计方法,对该点过程进行模型拟合。然后,模型实现的拉盖尔镶嵌提供微观结构几何形状的三维样本。在模型拟合步骤中使用的距离测量必须被选择为使得结构的几何特征以及材料属性都被正确地再现。通过几何样本,确定表观材料参数的边界效应独立属性。为此目的,通过引入附加的长度尺度,在施加边界条件的体积单元与应力和应变平均的体积单元之间产生差异。这允许获得一维边缘分布的边界效应独立直方图和材料参数的自相关函数的估计。使用这些数据,一个随机场建模,而不假设一个分布类的边缘分布。我们的目标是开发一种新的方法,从截断的Karhunen-Loève展开的随机场,并迭代地产生的非高斯随机变量的实现中包含的扩展。这种方法的优点是,随机变量线性地进入本征值问题的随机有限元公式,以确定固有频率,这有助于非-该项目的另一个目标是对特殊不均匀性的发生进行统计描述和建模,例如可变支柱厚度分布和缺陷,以便更好地了解本文的计算方法通过对结构的模态分析结果和样本图像的分析,逐步验证了本文方法的有效性。本文方法的另一个主要目的是为其它非均质材料的建模提供可借鉴的方法。这特别适用于发电机组的调查和边界效应的表观材料参数的独立属性,以及随机场建模。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Laguerre approximation of random foams
随机泡沫的拉盖尔近似
  • DOI:
    10.1080/14786435.2015.1078511
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    A. Liebscher
  • 通讯作者:
    A. Liebscher
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Carsten Proppe其他文献

Professor Dr.-Ing. Carsten Proppe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Carsten Proppe', 18)}}的其他基金

Multi-fidelity structural reliability analysis with polymorphic uncertainty - application to fatigue lifetime prediction for structures made of metal foam
具有多态不确定性的多保真结构可靠性分析 - 在泡沫金属结构疲劳寿命预测中的应用
  • 批准号:
    428469142
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Generalized Stochastic Nash Equilibrium Framework: Theory, Computation, and Application
广义随机纳什均衡框架:理论、计算和应用
  • 批准号:
    2231863
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Novel Numerical Methods for Nonlinear Stochastic PDEs and High Dimensional Computation
非线性随机偏微分方程和高维计算的新数值方法
  • 批准号:
    2309626
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Modeling, Analysis, Optimization, Computation, and Applications of Stochastic Systems
随机系统的建模、分析、优化、计算和应用
  • 批准号:
    2204240
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FET: Medium: Collaborative Research: An Efficient Framework for the Stochastic Verification of Computation and Communication Systems Using Emerging Technologies
FET:媒介:协作研究:使用新兴技术对计算和通信系统进行随机验证的有效框架
  • 批准号:
    1856733
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FET: Medium: Collaborative Research: An Efficient Framework for the Stochastic Verification of Computation and Communication Systems Using Emerging Technologies
FET:媒介:协作研究:使用新兴技术对计算和通信系统进行随机验证的有效框架
  • 批准号:
    1856740
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FET: Medium: Collaborative Research: An Efficient Framework for the Stochastic Verification of Computation and Communication Systems Using Emerging Technologies
FET:媒介:协作研究:使用新兴技术对计算和通信系统进行随机验证的有效框架
  • 批准号:
    1900542
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Population Stochastic approximation Monte Carlo Approximate Bayesian Computation
总体随机近似蒙特卡洛近似贝叶斯计算
  • 批准号:
    2114533
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Studentship
Unified Theory for Synthesis of Optimal Structures of Next-Generation Digital Filters Based on Stochastic Computation
基于随机计算的下一代数字滤波器最优结构综合统一理论
  • 批准号:
    15K06049
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic Contour Integral Methodology for the Computation of Two-Dimensional Electromagnetic Wave Propagation
计算二维电磁波传播的随机轮廓积分方法
  • 批准号:
    281198991
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Advanced Stochastic Computation for Inference from Tree, Graph and Network Models
用于树、图和网络模型推理的高级随机计算
  • 批准号:
    EP/K01501X/1
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了