Stochastic Contour Integral Methodology for the Computation of Two-Dimensional Electromagnetic Wave Propagation
计算二维电磁波传播的随机轮廓积分方法
基本信息
- 批准号:281198991
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed project will extend the so-called contour integral method (CIM) for the computation of two-dimensional packaging and interconnect structures such as printed circuit boards and planar optical substrates to take into account stochastic boundary conditions and simulation parameters. The stochastic contour integral method will be studied from a mathematical point of view, implemented in a numerically efficient way, and demonstrated with relevant application examples. To take into account stochastic boundary conditions and input parameters, the polynomial chaos expansion (PCE) known from other application areas will for the first time be applied in the context of a contour integral method for electrodynamics. For this purpose, a partially existing Fortran code will be extended by methods that can take into account statistical variations in the excitation as well as in the geometry and material parameters of the structure under investigation. On the one hand, a mathematical analysis of the stochastic contour integral methodology will be carried out, including demonstrations of the methodology with help of suitable examples and investigations with regard to the limitations of the numerical treatment. On the other hand, the methodology and the existing numerical code will be extended specifically for stochastic problems in the areas of microwave engineering and integrated planar optics. The potential of the methodology will be demonstrated by applying the extended code to structures that are relevant from an engineering point of view. By virtue of the cooperation between the Institute of Electromagnetic Theory and the Institute of Mathematics of the Hamburg University of Technology (TUHH) the project will facilitate fundamental research in mathematics and numerics in the context of a relevant and challenging application area in engineering.
拟议的项目将扩展所谓的轮廓积分法(CIM),用于计算二维封装和互连结构,如印刷电路板和平面光学基板,以考虑随机边界条件和模拟参数。随机轮廓积分法将从数学的角度进行研究,以一种有效的数值方式实现,并通过相关的应用实例进行演示。为了考虑随机边界条件和输入参数,多项式混沌展开(PCE)将首次应用于电动力学的轮廓积分方法。为此目的,部分存在的Fortran代码将通过可以考虑所研究结构的激励以及几何和材料参数的统计变化的方法进行扩展。一方面,将进行随机轮廓积分方法的数学分析,包括在适当的例子的帮助下演示该方法,并研究关于数值处理的局限性。另一方面,方法和现有的数值代码将扩展到微波工程和集成平面光学领域的随机问题。该方法的潜力将通过将扩展代码应用于从工程角度来看相关的结构来证明。通过电磁理论研究所和汉堡工业大学数学研究所(TUHH)之间的合作,该项目将促进数学和数值在相关和具有挑战性的工程应用领域的基础研究。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design space exploration for printed circuit board vias using polynomial chaos expansion
使用多项式混沌展开进行印刷电路板通孔的设计空间探索
- DOI:10.1109/isemc.2016.7571754
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:J. B. Preibisch;P. Triverio;C. Schuster
- 通讯作者:C. Schuster
Feasibility of uncertainty quantification for power distribution network modeling using PCE and a contour integral method
使用 PCE 和轮廓积分法进行配电网络建模不确定性量化的可行性
- DOI:10.1109/isemc.2018.8393773
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:D. Dahl;Ö. F. Yildiz;E. Frick;C. Seifert;M. Lindner;C. Schuster
- 通讯作者:C. Schuster
Multiscale Simulation of 2-D Photonic Crystal Structures Using a Contour Integral Method
使用轮廓积分方法对二维光子晶体结构进行多尺度模拟
- DOI:10.1109/jmmct.2019.2904195
- 发表时间:2019
- 期刊:
- 影响因子:2.3
- 作者:Eduard;Seifert;Christian;Lindner;Schuster;Christian
- 通讯作者:Christian
Extension of the Contour Integral Method for the modeling of TE scattering in two-dimensional photonic structures using the duality principle
使用对偶原理扩展二维光子结构中 TE 散射建模的轮廓积分法
- DOI:10.1109/metamaterials.2016.7746520
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:J. B. Preibisch;C. Schuster
- 通讯作者:C. Schuster
Variability analysis of via crosstalk using polynomial chaos expansion
使用多项式混沌展开进行过孔串扰的变异性分析
- DOI:10.1109/nemo.2017.7964272
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:E. Frick;J. B. Preibisch;C. Seifert;M. Lindner;C. Schuster
- 通讯作者:C. Schuster
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Marko Lindner其他文献
Professor Dr. Marko Lindner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
- 批准号:
EP/Y021614/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Monitoring and auditing of AI in clinical practice - radiotherapy contour quality assurance
临床实践中人工智能的监测和审核——放疗轮廓质量保证
- 批准号:
10072915 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
Achieved through Contour Engineering to Improve Tolerance (FACE-IT)
通过轮廓工程提高耐受性 (FACE-IT)
- 批准号:
2889020 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Human and machine perception of 2D and 3D shape from contour
人类和机器从轮廓感知 2D 和 3D 形状
- 批准号:
RGPIN-2022-04533 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Contour tracking control in position domain: principle, development, and application
位置域轮廓跟踪控制:原理、发展与应用
- 批准号:
RGPIN-2016-04527 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Improvement of flexion finger angles' estimation accuracy by instructional learning of finger contour line information
通过手指轮廓线信息的指导学习提高屈指角度的估计精度
- 批准号:
21K17867 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Contour tracking control in position domain: principle, development, and application
位置域轮廓跟踪控制:原理、发展与应用
- 批准号:
RGPIN-2016-04527 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Making temperature-pressure contour map of sound wave relaxation strength of liquid water - toward verification of liquid-liquid phase transition scenario
绘制液态水声波弛豫强度的温度-压力等值线图——以验证液-液相变场景
- 批准号:
20K03789 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Contour tracking control in position domain: principle, development, and application
位置域轮廓跟踪控制:原理、发展与应用
- 批准号:
RGPIN-2016-04527 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Getting a Grip on Object Shape: Grasp points in space or magnitude from contour?
掌握物体形状:从轮廓中掌握空间中的点或大小?
- 批准号:
487969-2016 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships