Some Mathematical Problems Associated with Hyporheic Flow
与潜流有关的一些数学问题
基本信息
- 批准号:1715504
- 负责人:
- 金额:$ 26.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1715504Wang The supply of fresh water is under pressure for many reasons, including natural variability, population growth, expansion of business activities, rapid urbanization, climate change, depletion of aquifers, and pollution. Therefore, there is an urgent need to study water resources, especially unfrozen fresh water in terms of surface water and groundwater. Surface water and groundwater interact with each other. A prime example is the hyporheic zone, a portion of the bed and bank of a river or stream where surface water and groundwater mix, exchanging solutes and water at various scales. The hyporheic zone is critical to the ecology of river corridors. In particular, it is important in controlling the flux and location of water exchange between stream and subsurface; providing a habitat for benthic and interstitial organisms; providing a spawning ground and refuge for certain species of fish; providing a rooting zone for aquatic plants; serving as an important zone for cycling of carbon, energy, and nutrients; providing a natural attenuation zone for certain pollutants by biodegradation, sorption, and mixing; and moderating river water temperature. The purpose of this project is to develop and analyze better models of flows in the hyporheic zone in order to improve our understanding of the fundamental physical processes associated with hyporheic flows. Graduate students participate in the work of the project. The investigator and colleagues study the Navier-Stokes-Darcy-heat system that models coupled surface water-groundwater interaction together with thermal effects. The mathematical model presents several challenges: the strong nonlinearity associated with the Navier-Stokes flow in the river, the complications arising from including physically and biologically important thermal effects, the substantial disparity of spatial and temporal scales between flows in the river and in surrounding porous media (small Darcy number), the uncertainty associated with the geometric form and the permeability of the riverbed and riverbank, and the different physics in different parts of the physical domain. Although these difficult issues have been studied separately before for some subsystems of the models under consideration here, the need for a better integration of the physical and biological factors relevant to flow and transport in the hyporheic zone requires a more comprehensive model. The work of the investigator proceeds in steps. First is mathematical analysis of the model in terms of asymptotic behavior in the physically important small Darcy number regime. Second, he designs, analyzes, and implements accurate and efficient decoupled numerical methods for the model so that the results can be compared to experiments performed by collaborators. Third, he uses the model to assess the validity of various simplifications utilized by the water resources community in hyporheic flow studies. Graduate students participate in the work of the project.
淡水供应面临压力的原因有很多,包括自然变化、人口增长、商业活动扩张、快速城市化、气候变化、含水层枯竭和污染。因此,迫切需要研究水资源,特别是地表水和地下水方面的未冻结淡水。地表水和地下水相互作用。一个最好的例子是潜流带,这是河流或小溪河床和河岸的一部分,地表水和地下水在这里混合,以不同的规模交换溶质和水。潜流带对河流廊道的生态至关重要。特别是,在以下方面至关重要:控制河流与地下水之间的水交换通量和位置;为底栖生物和间隙生物提供栖息地;为某些物种提供产卵地和庇护所;为水生植物提供生根区;作为碳、能量和养分循环的重要区域;通过生物降解、吸附和混合为某些污染物提供自然衰减区;以及减缓河水温度。这个项目的目的是开发和分析更好的低速带流动模型,以提高我们对与低速流相关的基本物理过程的理解。研究生参与该项目的工作。这位研究人员和他的同事研究了纳维-斯托克斯-达西-热系统,该系统模拟了地表水-地下水相互作用和热效应的耦合。数学模型提出了若干挑战:与河流中的Navier-Stokes流动有关的强烈非线性,包括重要的物理和生物效应引起的复杂性,河流中的流动与周围多孔介质中的流动之间的巨大时空尺度差异(小达西数),与河床和河岸的几何形状和渗透性有关的不确定性,以及物理领域不同部分的不同物理。虽然这些困难的问题以前已经针对所考虑的模型的一些子系统进行了单独研究,但为了更好地整合与潜流带中的流动和输送相关的物理和生物因素,需要一个更全面的模型。调查员的工作是循序渐进的。首先,对该模型在物理上重要的小达西数区域的渐近行为进行了数学分析。其次,他为模型设计、分析和实现了准确和高效的解耦数值方法,以便将结果与合作者进行的实验进行比较。第三,他使用该模型评估了水资源社区在地下水流研究中使用的各种简化的有效性。研究生参与该项目的工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoming Wang其他文献
Line Distributed Pores in Laser Powder Bed Fusion Manufactured Dies: A Critical Factor in Die Failure for High Pressure Die Casting
激光粉末床熔融制造模具中的线分布孔:高压压铸模具失效的关键因素
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:6.3
- 作者:
Xin He;Corey Vian;Xiaoming Wang - 通讯作者:
Xiaoming Wang
Soliton Solution of the Peyrard–Bishop–Dauxois Model of DNA Dynamics with M-Truncated and β-Fractional Derivatives Using Kudryashov’s R Function Method
使用 Kudryashov R 函数方法的具有 M 截断和 β 分数导数的 DNA 动力学 Peyrard-Bishop-Dauxois 模型的孤子解
- DOI:
10.3390/fractalfract6100616 - 发表时间:
2022-10 - 期刊:
- 影响因子:5.4
- 作者:
Xiaoming Wang;Ghazala Akram;Maasoomah Sadaf;Hajra Mariyam;Muhammad Abbas - 通讯作者:
Muhammad Abbas
Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives
一类带Hilfer分数阶导数的隐式脉冲Langevin方程的存在性、唯一性及Ulam稳定性
- DOI:
10.3934/math.2021288 - 发表时间:
2021 - 期刊:
- 影响因子:2.2
- 作者:
Xiaoming Wang;Rizwan Rizwan;Lee Jung Rey;Zada Akbar;Shah Syed Omar - 通讯作者:
Shah Syed Omar
New Developments on Ostrowski Type Inequalities via q-Fractional Integrals Involving s-Convex Functions
涉及 s 凸函数的 q 分数阶积分奥斯特洛夫斯基型不等式的新进展
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Xiaoming Wang;Khuram Ali Khan;Allah Ditta;Ammara Nosheen;Khalid Mahmood Awan;Rostin Matendo Mabela - 通讯作者:
Rostin Matendo Mabela
Correlation for tubulent convection heat transfer in elliptical tubes by numerical simulations
通过数值模拟关联椭圆管中的管流对流换热
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yang mo;Xiaoming Wang - 通讯作者:
Xiaoming Wang
Xiaoming Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoming Wang', 18)}}的其他基金
Collaborative Research: Gateway to North America--the Great American Biotic Interchange (GABI) in Mexico and Origin of C4 Grassland
合作研究:北美门户——墨西哥大美洲生物交汇处(GABI)与C4草原起源
- 批准号:
1949742 - 财政年份:2020
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Critical Transitions Across the Phanerozoic: A Roundtable Workshop on Sino-US Collaborative Research on Major Events in the History of Life during the Past 600 Million Years
显生宙的关键转变:中美合作研究过去6亿年生命史上重大事件圆桌研讨会
- 批准号:
1332320 - 财政年份:2013
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Critical Transitions Across the Phanerozoic: A Roundtable Workshop on Sino-US Collaborative Research on Major Events in the History of Life during the Past 600 Million Years
显生宙的关键转变:中美合作研究过去6亿年生命史上重大事件圆桌研讨会
- 批准号:
1138908 - 财政年份:2012
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Collaborative Research: High-resolution, multi-proxy Miocene-Pleistocene climate and environmental record from the high-elevation Zhada basin, SW Tibetan Plateau
合作研究:青藏高原西南部高海拔扎达盆地高分辨率、多代理中新世-更新世气候与环境记录
- 批准号:
1227212 - 财政年份:2012
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Quantifying long time statistical properties of a few fluid models
量化一些流体模型的长期统计特性
- 批准号:
1008852 - 财政年份:2010
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Collaborative Research: Late Cenozoic Vertebrate Paleontology and Paleoenvironments of the Tibetan Plateau (China)
合作研究:青藏高原晚新生代脊椎动物古生物学和古环境(中国)
- 批准号:
0958704 - 财政年份:2010
- 资助金额:
$ 26.6万 - 项目类别:
Continuing Grant
DISSERTATION RESEARCH: Evolution of craniodental function in Hyaenidae and Canidae
论文研究:鬣狗科和犬科动物颅齿功能的进化
- 批准号:
0909807 - 财政年份:2009
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Workshop on Neogene Mammalian Chronology of Asia, June 2009 in Beijing, China
亚洲新近纪哺乳动物年代学研讨会,2009 年 6 月在中国北京
- 批准号:
0924142 - 财政年份:2009
- 资助金额:
$ 26.6万 - 项目类别:
Continuing Grant
Collaborative Research: The Impact of Late Cenozoic Himalayan-Tibetan Uplift on C4 Plant Expansion, Climate and Mammalian Evolution in Northern China
合作研究:晚新生代喜马拉雅-西藏隆升对中国北方C4植物扩张、气候和哺乳动物进化的影响
- 批准号:
0716507 - 财政年份:2008
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
相似海外基金
Some Mathematical Finance Problems Under Model Uncertainty
模型不确定性下的一些数学金融问题
- 批准号:
1613208 - 财政年份:2016
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Some Mathematical Problems on Exact Solitary Water Waves
关于精确孤立水波的一些数学问题
- 批准号:
1210979 - 财政年份:2012
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Some Mathematical Problems in Fluid Dynamics
流体动力学中的一些数学问题
- 批准号:
1109562 - 财政年份:2011
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Mathematical Analysis of Some Fundamental Problems in Solid-Liquid Interaction
固液相互作用若干基本问题的数学分析
- 批准号:
1009456 - 财政年份:2010
- 资助金额:
$ 26.6万 - 项目类别:
Continuing Grant
Mathematical Analysis of Some Problems of Particle-Liquid Motion
质液运动若干问题的数学分析
- 批准号:
0404834 - 财政年份:2004
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Some Approximation Problems in Differential Equations
数学科学:微分方程中的一些近似问题
- 批准号:
9625813 - 财政年份:1996
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Some Problems in Geometric Topology
数学科学:几何拓扑中的一些问题
- 批准号:
9626101 - 财政年份:1996
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Computational Aspects of Some Problems in Convex Geometry
数学科学:凸几何中一些问题的计算方面
- 批准号:
9626749 - 财政年份:1996
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Some Problems in 3-Dimensional Topology and in Related Algebra
数学科学:三维拓扑及相关代数中的一些问题
- 批准号:
9626537 - 财政年份:1996
- 资助金额:
$ 26.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Some Semilinear Elliptic Problems
数学科学:一些半线性椭圆问题
- 批准号:
9622102 - 财政年份:1996
- 资助金额:
$ 26.6万 - 项目类别:
Standard Grant














{{item.name}}会员




