Mapping Sequence-Structure Function Landscape by Integrating Evolutionary Landscape Inference with Folding and Dynamics

通过将进化景观推理与折叠和动力学相结合来映射序列-结构功能景观

基本信息

  • 批准号:
    1715591
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Title: Mapping Sequence-Structure Function Landscape by Integrating Evolutionary Landscape Inference with Folding and DynamicsProtein-­protein interactions are crucial in all cellular functions, as they underpin all signaling networks within the cell. These interactions are mediated by small protein interaction domains (PIDs) that bring together binding partners in a tightly regulated manner. The sequence of these PIDs encodes all the features necessary for their function, including proper folding in a characteristic 3D structure and the ability to recognize their partner specifically yet dynamically. All these features are the result of evolution, and thus are encoded in the evolutionary history of the PIDs. In this project, the PIs will develop well integrated computational and experimental methods that will analyze existing sequences to extract all the co-evolved positions and to evaluate quantitatively their contribution to folding and function. They will use one of the most abundant functional domains that mediate regulatory protein complexes in various signaling networks involved in cells as a model PID. Their methods will enable identification of how co­evolved contacts contribute to the folding of these domains. The PIs will then examine the binding interactions of these domains to understand how co-evolved positions contribute to binding. This project closely integrates computational and experimental approaches, offering unique learning opportunities to students involved. This project will provide teaching modules, campus visits, and research internships for high school students.Protein interaction domains (PIDs) mediate interactions in signaling networks with unique functional characteristics such as (i) displaying tolerance to random mutations yet evolving for new functions, (ii) being involved in allosteric regulations, (iii) interacting with more than one partner yet showing specificity in their interaction. All these features are encoded in their evolutionary history. Recent advancements in sequencing and in evolutionary inference methods enable us to identify co-evolved positions and also conservation profiles. In this project, novel computational methods will be integrated with experimental mutagenesis analysis to evaluate quantitatively the contribution of co-evolved positions to folding and function. Two objectives will be pursued. First, a small set of co-evolved contacts that dictates the depth and smoothness of the folding landscape, ensuring a minimally frustrated folding landscape will be determined. This will elucidate folding principles of PIDs. Second, by integrating the residue dynamic coupling method with the co-evolutionary analysis, the mechanism of co-evolved contacts that govern binding recognition and allosteric regulations in PIDs will be determined. With this information, the project will elucidate the how and why a set of co-evolved positions are critical for fold and function, and provide the blueprints of PIDs. The WW domain will be used as a model PID. WW domains are independently folded, small PID modules that recapitulate all the unique characteristics of PIDs. Moreover, they are one of the most abundant functional modules in cell, mediating regulatory protein complexes in various signaling networks involved in physiological and disease states. The long term goal of this proposal is to devise means for predicting factors that dictate folding and binding recognition of PIDs, which underpin all cellular functions. This project is supported by the Molecular Biophysics Cluster of the Molecular and Cellular Biosciences Division in the Directorate for Biological Sciences.
职务名称:通过整合进化景观推断与折叠和动力学绘制序列-结构-功能景观蛋白质-蛋白质相互作用在所有细胞功能中至关重要,因为它们支撑细胞内的所有信号网络。这些相互作用由小蛋白相互作用结构域(PID)介导,所述小蛋白相互作用结构域以严格调控的方式将结合伴侣聚集在一起。这些PID的序列编码了其功能所需的所有功能,包括在特征3D结构中的正确折叠以及特定但动态地识别其伙伴的能力。所有这些特征都是进化的结果,因此被编码在PID的进化历史中。在这个项目中,PI将开发良好集成的计算和实验方法,将分析现有的序列,以提取所有共同进化的位置,并定量评估其对折叠和功能的贡献。他们将使用最丰富的功能结构域之一,介导细胞中涉及的各种信号网络中的调节蛋白复合物作为模型PID。他们的方法将能够识别如何共同进化的接触有助于这些结构域的折叠。然后,PI将检查这些结构域的结合相互作用,以了解共同进化的位置如何有助于结合。该项目紧密结合了计算和实验方法,为参与的学生提供了独特的学习机会。蛋白质相互作用结构域(PID)介导信号网络中的相互作用,具有独特的功能特征,如(i)对随机突变具有耐受性,但仍在为新的功能而进化,(ii)参与变构调节,(iii)与多个伙伴相互作用,但在相互作用中表现出特异性。所有这些特征都在它们的进化历史中被编码。测序和进化推理方法的最新进展使我们能够确定共同进化的位置和保护概况。在这个项目中,新的计算方法将与实验诱变分析相结合,以定量评估共同进化的位置对折叠和功能的贡献。将追求两个目标。首先,确定一小组共同进化的接触点,这些接触点决定折叠景观的深度和平滑度,确保最小程度地挫败折叠景观。这将阐明PID的折叠原理。第二,通过将残基动态耦合方法与协同进化分析相结合,确定了PID中共同进化的联系机制,这些联系决定了PID中的结合识别和变构调节。有了这些信息,该项目将阐明一组共同进化的位置如何以及为什么对折叠和功能至关重要,并提供PID的蓝图。WW域将用作模型PID。WW域是独立折叠的小型PID模块,概括了PID的所有独特特征。此外,它们是细胞中最丰富的功能模块之一,在涉及生理和疾病状态的各种信号网络中介导调节蛋白复合物。该提案的长期目标是设计用于预测决定PID的折叠和结合识别的因素的方法,PID是所有细胞功能的基础。该项目得到了生物科学理事会分子和细胞生物科学司分子生物物理学小组的支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Information Propagation in Time through Allosteric Signaling
  • DOI:
    10.1103/physrevresearch.2.023367
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    T. Modi;S. Ozkan;S. Press'e
  • 通讯作者:
    T. Modi;S. Ozkan;S. Press'e
Local Interactions That Contribute Minimal Frustration Determine Foldability
影响最小化的局部交互决定了可折叠性
  • DOI:
    10.1021/acs.jpcb.1c00364
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zou, Taisong;Woodrum, Brian W.;Halloran, Nicholas;Campitelli, Paul;Bobkov, Andrey A.;Ghirlanda, Giovanna;Ozkan, Sefika Banu
  • 通讯作者:
    Ozkan, Sefika Banu
Can sequence-specific and dynamics-based metrics allow us to decipher the function in IDP sequences?
  • DOI:
    10.1016/j.bpj.2021.04.008
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    S. Ozkan
  • 通讯作者:
    S. Ozkan
Ancient thioredoxins evolved to modern-day stability-function requirement by altering native state ensemble
Biotechnological and protein-engineering implications of ancestral protein resurrection
  • DOI:
    10.1016/j.sbi.2018.02.007
  • 发表时间:
    2018-08-01
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Risso, Valeria A.;Sanchez-Ruiz, Jose M.;Ozkan, S. Banu
  • 通讯作者:
    Ozkan, S. Banu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sefika Ozkan其他文献

Sefika Ozkan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

珍稀药用植物雪莲ESTs(Expressed Sequence Tags)库的建立及抗逆相关转录因子基因研究
  • 批准号:
    30500654
  • 批准年份:
    2005
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Ancient human genome sequence analysis to elucidate the population structure of Kofun period humans
古代人类基因组序列分析阐明古坟时代人类的种群结构
  • 批准号:
    23K05948
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Deep transformers for integrating protein sequence, structure and interaction data to predict function
用于整合蛋白质序列、结构和相互作用数据以预测功能的深度转换器
  • 批准号:
    2308699
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Probing Mechanisms of Polycystin-1 Regulation Using Peptide Modulators Designed by Sequence- and Structure-Based Learning
使用基于序列和结构的学习设计的肽调制器探索多囊蛋白-1 调节机制
  • 批准号:
    10917464
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
The Dundee Resource for Sequence Analysis and Structure Prediction (DRSASP) - 2023 and Beyond
邓迪序列分析和结构预测资源 (DRSASP) - 2023 年及以后
  • 批准号:
    BB/X018628/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Integrative deep learning algorithms for understanding protein sequence-structure-function relationships: representation, prediction, and discovery
用于理解蛋白质序列-结构-功能关系的集成深度学习算法:表示、预测和发现
  • 批准号:
    10712082
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Sequence-structure-function relationships in human visual photopigments
人类视觉感光色素中的序列-结构-功能关系
  • 批准号:
    10811882
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
UKRI/BBSRC-NSF/BIO: Unifying Pfam protein sequence and ECOD structural classifications with structure models
UKRI/BBSRC-NSF/BIO:通过结构模型统一 Pfam 蛋白质序列和 ECOD 结构分类
  • 批准号:
    BB/X012492/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
i-Motifs: Sequence, Structure and Function in Ageing
i-Motifs:衰老过程中的序列、结构和功能
  • 批准号:
    BB/W001616/1
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
RNA Structure Modeling Using Physics and Sequence Comparison
使用物理和序列比较进行 RNA 结构建模
  • 批准号:
    10405399
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Mapping the sequence landscape of RNA structure, dynamics and protein interactions using high-throughput single-molecule FRET
使用高通量单分子 FRET 绘制 RNA 结构、动力学和蛋白质相互作用的序列图谱
  • 批准号:
    10707257
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了