Folding and Mechanical Response of Single Proteins Probed at High Spatio-Temporal Resolution

在高时空分辨率下探测单个蛋白质的折叠和机械响应

基本信息

  • 批准号:
    1716033
  • 负责人:
  • 金额:
    $ 68.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Proteins are essential to life. For humans to walk, hear, or touch, proteins must generate and respond to forces after folding into their correct three-dimensional structure. Yet, traditional biochemical techniques do not measure a protein's response to force, hindering progress in the emerging field of mechanobiology. Inside a cell, force can induce subtle change in a protein's structure, fully unfold a protein, or disrupt the interaction between two proteins. These effects all have biological consequence. To exert a force on individual proteins and measure these tiny signals, this project will use novel atomic force microscope (AFM) cantilevers, which are micron-scale, diving-board like force sensors. This project will help elucidate the response of proteins to force, a critical but understudied signaling mechanism in biology. More generally, studying the process of protein folding with these novel cantilevers will provide insight into how proteins fold, an ongoing challenge despite five decades of effort. By using the tools of physics and nanoscience to solve exciting problems in biology, this project will provide excellent interdisciplinary training for high school and colleges students just starting their research career. As statistics are vital to interpreting experiments but are poorly understood by many young researchers, this project will also generate novel training tools focused on statistics and data analysis using biological examples. These interactive education simulations will be developed in conjunction with the CU-Boulder PhET program and thereby leverage their expertise in such simulations and world-wide distribution.The twin scientific goals are (i) to characterize structural transitions in two widely studied mechano-sensitive proteins, titin's I27 domain and the focal adhesion kinase, since previous studies have either yielded conflicting results or failed to resolve a predicted mechanically induced transition; and (ii) measure a model two-state protein's folding transition time with 1-microsecond resolution. The key technical hurdle is that traditional AFM studies lack the spatial precision to resolve subtle changes in protein structure and lack the temporal precision to characterize the conformational dynamics of a traditional globular protein during the brief time the protein moves along its transition path. This project will overcome these obstacles by applying a state-of-the-art combination of force precision, stability, and time resolution enabled by focused-ion beam modification of AFM cantilevers. This project is jointly funded by the Molecular Biophysics Cluster in the Division of Molecular and Cellular Biosciences and the Physics of Living Systems Program in the Division of Physics.
蛋白质是生命所必需的。对于人类来说,要走路、听或触摸,蛋白质必须在折叠成正确的三维结构后产生并响应力。然而,传统的生物化学技术不能测量蛋白质对力的反应,这阻碍了新兴的机械生物学领域的进展。在细胞内,力可以引起蛋白质结构的微妙变化,完全展开蛋白质,或破坏两种蛋白质之间的相互作用。这些影响都有生物学后果。为了对单个蛋白质施加力并测量这些微小信号,该项目将使用新型原子力显微镜(AFM)杠杆,这是微米级的,潜水板状的力传感器。该项目将有助于阐明蛋白质对力的反应,这是生物学中一种关键但未充分研究的信号机制。更一般地说,研究蛋白质折叠的过程与这些新的杠杆将提供深入了解蛋白质如何折叠,一个持续的挑战,尽管50年的努力。通过使用物理和纳米科学的工具来解决生物学中令人兴奋的问题,该项目将为刚刚开始研究生涯的高中和大学生提供优秀的跨学科培训。由于统计数据对于解释实验至关重要,但许多年轻研究人员对此知之甚少,该项目还将产生新的培训工具,重点是使用生物学实例进行统计和数据分析。这些交互式教育模拟将与CU-Boulder PhET计划一起开发,从而利用他们在此类模拟和全球分布方面的专业知识。双重科学目标是:(i)表征两种广泛研究的机械敏感蛋白质,肌联蛋白的I27结构域和黏着斑激酶的结构转变,因为先前的研究要么产生了相互矛盾的结果,要么未能解决预测的机械诱导的过渡;和(ii)测量模型的两个状态的蛋白质的折叠过渡时间与1微秒的分辨率。关键的技术障碍是,传统的AFM研究缺乏空间精度来解决蛋白质结构的细微变化,缺乏时间精度来表征传统球状蛋白质在沿着其过渡路径运动的短暂时间内的构象动力学。本项目将通过应用最先进的力精度,稳定性,和时间分辨率,使聚焦离子束修改的原子力显微镜杠杆。该项目由分子和细胞生物科学部的分子生物物理学集群和物理学部的生命系统物理学项目共同资助。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modulation of a protein-folding landscape revealed by AFM-based force spectroscopy notwithstanding instrumental limitations
Type III secretion system effector proteins are mechanically labile
Quantifying the Native Energetics Stabilizing Bacteriorhodopsin by Single-Molecule Force Spectroscopy
通过单分子力谱定量稳定细菌视紫红质的天然能量
  • DOI:
    10.1103/physrevlett.125.068102
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Yu Hao;Jacobson David R.;Luo Hao;Perkins Thomas T.
  • 通讯作者:
    Perkins Thomas T.
Bending and looping of long DNA by Polycomb repressive complex 2 revealed by AFM imaging in liquid
  • DOI:
    10.1093/nar/gkaa073
  • 发表时间:
    2020-04-06
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Heenan, Patrick R.;Wang, Xueyin;Perkins, Thomas T.
  • 通讯作者:
    Perkins, Thomas T.
Membrane-Protein Unfolding Intermediates Detected with Enhanced Precision Using a Zigzag Force Ramp
  • DOI:
    10.1016/j.bpj.2019.12.003
  • 发表时间:
    2020-02-04
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Jacobson, David R.;Uyetake, Lyle;Perkins, Thomas T.
  • 通讯作者:
    Perkins, Thomas T.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Perkins其他文献

Sensitivity Of Dna-hairpins Dynamics To The Mechanism Of Force Feedback Probed Using A Surface-coupled Passive Force Clamp
  • DOI:
    10.1016/j.bpj.2008.12.1441
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yeonee Seol;Thomas Perkins
  • 通讯作者:
    Thomas Perkins
High Precision AFM-Based SMFS of Mechanically Labile T3SS Effectors
  • DOI:
    10.1016/j.bpj.2017.11.1975
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Marc-Andre LeBlanc;Robert Walder;Devin Edwards;Thomas Perkins;Marcelo Sousa
  • 通讯作者:
    Marcelo Sousa

Thomas Perkins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Perkins', 18)}}的其他基金

Nanomechanics of Tubulin Extraction from Microtubules and Adhesin Catch-Bond Rupture
从微管中提取微管蛋白的纳米力学和粘附素捕获键断裂
  • 批准号:
    2139572
  • 财政年份:
    2022
  • 资助金额:
    $ 68.4万
  • 项目类别:
    Standard Grant
IDBR: Type A, An Ultraprecise and Ultrastable Atomic Force Microscope for Multimodal Characterization of Biological Molecules and Materials
IDBR:A 型,超精密、超稳定原子力显微镜,用于生物分子和材料的多模态表征
  • 批准号:
    1353987
  • 财政年份:
    2014
  • 资助金额:
    $ 68.4万
  • 项目类别:
    Continuing Grant
MRI: Development of an Atomic Force Microscope with Atomic Scale Stability for Biological Studies in Water
MRI:开发具有原子尺度稳定性的原子力显微镜,用于水中生物学研究
  • 批准号:
    0923544
  • 财政年份:
    2009
  • 资助金额:
    $ 68.4万
  • 项目类别:
    Standard Grant
NIRT: Watching Proteins Bend DNA with Subnanometer Resolution
NIRT:以亚纳米分辨率观察蛋白质弯曲 DNA
  • 批准号:
    0404286
  • 财政年份:
    2004
  • 资助金额:
    $ 68.4万
  • 项目类别:
    Standard Grant
Design and Evaluation of a Two-Semester Course Sequence In Software Engineering
软件工程两学期课程序列的设计和评估
  • 批准号:
    7900607
  • 财政年份:
    1979
  • 资助金额:
    $ 68.4万
  • 项目类别:
    Standard Grant

相似海外基金

Mechanical response of bone under the light of biological evolution
生物进化视角下骨骼的机械响应
  • 批准号:
    23K08670
  • 财政年份:
    2023
  • 资助金额:
    $ 68.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
In situ observation of mechanical response of polymers doped with aggregation-induced emission probes
原位观察掺杂聚集诱导发射探针的聚合物的机械响应
  • 批准号:
    23K04852
  • 财政年份:
    2023
  • 资助金额:
    $ 68.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantifying variability in the mechanical response of CrCrZr alloys using crystal plasticity modelling
使用晶体塑性建模量化 CrCrZr 合金机械响应的变化
  • 批准号:
    2892475
  • 财政年份:
    2023
  • 资助金额:
    $ 68.4万
  • 项目类别:
    Studentship
Combined mechanical response of advanced porous materials for body support interfaces
用于身体支撑界面的先进多孔材料的组合机械响应
  • 批准号:
    2883836
  • 财政年份:
    2023
  • 资助金额:
    $ 68.4万
  • 项目类别:
    Studentship
Differential changes in energy metabolism in response to mechanical tension give rise to human scaring heterogeneity
响应机械张力的能量代谢的差异变化导致人类恐惧异质性
  • 批准号:
    10660416
  • 财政年份:
    2023
  • 资助金额:
    $ 68.4万
  • 项目类别:
Modeling the Mechanical Behavior of the Periodontal Ligament in Response to Externally Applied Loading
模拟牙周膜响应外部载荷的机械行为
  • 批准号:
    RGPIN-2017-05606
  • 财政年份:
    2022
  • 资助金额:
    $ 68.4万
  • 项目类别:
    Discovery Grants Program - Individual
Influence of Genetic Background on Bone Anabolic Response to Mechanical Loading
遗传背景对机械负荷下骨合成代谢反应的影响
  • 批准号:
    10373527
  • 财政年份:
    2022
  • 资助金额:
    $ 68.4万
  • 项目类别:
Quantifying knee joint mechanical exposures and tissue response in high knee flexion
量化膝关节高屈曲时的机械暴露和组织反应
  • 批准号:
    RGPIN-2019-04109
  • 财政年份:
    2022
  • 资助金额:
    $ 68.4万
  • 项目类别:
    Discovery Grants Program - Individual
Development of master alloys for improving the sintering response and mechanical properties of high performance steel components produced by powder metallurgy and additive manufacturing
开发中间合金,以改善粉末冶金和增材制造生产的高性能钢部件的烧结响应和机械性能
  • 批准号:
    RGPIN-2018-04533
  • 财政年份:
    2022
  • 资助金额:
    $ 68.4万
  • 项目类别:
    Discovery Grants Program - Individual
Deformation-Dependent Mechanical Response in Tailings Dam Failures
尾矿坝失效中变形相关的机械响应
  • 批准号:
    DGECR-2022-00518
  • 财政年份:
    2022
  • 资助金额:
    $ 68.4万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了