ABI Innovation: A New Framework to Analyze Plant Energy-related Phenomics Data
ABI Innovation:分析植物能量相关表型组数据的新框架
基本信息
- 批准号:1716340
- 负责人:
- 金额:$ 58.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
To increase crop productivity, photosynthetic reactions must be tightly regulated to efficiently capture light energy and to avoid photodamage. This regulation is especially critical under unpredictable fluctuations in the natural environment, which could damage the balance between light input and the capacity of assimilatory reaction to process it. New plant photosynthesis phenotyping platforms have been developed in Dr. David Kramer (co-PI)'s lab, allowing one to determine how the photosynthetic machinery is integrated into cells and is delicately balanced to provide the right amount of energy, at the right times, in the correct forms without damaging the plant. The current major step is to extract useful information from massive plant phenotyping (performance) data to generate testable hypotheses and discover unknown plant energy-related genes and processes. Specifically, the objective is to develop new software approaches for processing, modeling and visualizing sophisticated and overwhelming amount of phenomics data in plant science to forms that are interpretable computers (to classify plants into genetic and performance categories) and by humans (through advanced visualization), leading to new insights on how plants function and new targets for plant improvement. Large-scale phenotyping (phenomics) promises to bridge the gap between genomics, gene functions and traits. Specifically, to meet our growing needs for food and fuel, new bio-imaging approaches were developed to allow high-throughput, detailed plant phenotyping, with a focus on improving the efficiency of photosynthesis. Dr. Jin Chen (PI) and Dr. David Kramer (co-PI) aim to identify genes and processes that control photosynthesis efficiency in response to fluctuating environmental conditions, which are critical for understanding and improving plant energy storage and improving crop productivity. To achieve this, the research team must resolve a wide range of interacting factors that respond to environmental factors over very wide dynamic ranges of frequency, duration and intensity of conditions. Recently, the Dynamic Environmental Phenotype Imager (DEPI), a novel platform for monitoring responses of plant phenotypes under dynamic conditions has been developed in Dr. David Kramer (co-PI)'s lab. Initial data from DEPI reveals previously unseen effects attributable to genes formerly thought to have no known function. While these developments on plant phenotyping are exciting, researchers are limited by the tools to analyze fully the phenomics data. Removing that limitation is the proposed goal of this project. Dr. Jin Chen (PI) and Dr. David Kramer (co-PI) will discover, develop, and apply Plant Phenomics Data Analytics (PPDA) solutions, such that massive phenomics data is transformed into knowledge or testable hypotheses to identify important genes to improve photosynthesis efficiency under dynamic environmental conditions. PPDA will ensure high data quality, identify and visualize important genes from complex plant phenomics data, and will advance knowledge discovery in the broader community. The project is comprised of four components: Aim 1. Develop, test and apply phenomics data quality control program to identify abnormal data and distinguish whether they arise from noise, artifacts or more interesting cases of altered biological responses. Aim 2. Develop, test and apply phenomics pattern discovery algorithms to identify important energy-related genes from photosynthesis phenomics data. The research team will develop dynamic phenotype network construction and phenotype module discovery algorithms to turn sophisticated phenomics data to testable hypotheses, to discover unknown genes, and to connect biological processes. Aim 3. Develop a data visualization package for complex phenomics data display using integrative multi-dimensional visualization methods, in order to facilitate scientific discovery on energy-related genes in response to changing environmental conditions. Aim 4. Provide proof of utility by applying PPDA to rationale for testing the G protein activation state regulation on photosynthesis efficiency. The researchers will phenotype Arabidopsis thaliana a large informative set of G protein mutants under changing environmental conditions. Then they will apply PPDA to identify genes with emergent functions under subsets of the dynamic environmental conditions. They will resolve the role of G signaling in fluctuation detection. The results of the project can be found at http://www.msu.edu/~jinchen/PPDA.
为了提高作物产量,必须严格调节光合反应,以有效地捕获光能并避免光损伤。这种调节在自然环境中不可预测的波动下尤其重要,这可能会破坏光输入和同化反应处理它的能力之间的平衡。大卫克雷默博士(合作PI)的实验室开发了新的植物光合作用表型平台,允许人们确定光合机制如何整合到细胞中,并微妙地平衡以提供适量的能量,在正确的时间,以正确的形式,而不损害植物。目前的主要步骤是从大量的植物表型(性能)数据中提取有用的信息,以产生可检验的假设,并发现未知的植物能量相关基因和过程。具体来说,目标是开发新的软件方法,用于处理、建模和可视化植物科学中复杂且大量的表型组学数据,使其成为可解释的计算机(将植物分类为遗传和性能类别)和人类(通过高级可视化)的形式,从而对植物如何发挥作用产生新的见解以及植物改良的新目标。大规模表型分析(表型组学)有望弥合基因组学、基因功能和性状之间的差距。具体而言,为了满足我们对食物和燃料日益增长的需求,开发了新的生物成像方法,以实现高通量,详细的植物表型分析,重点是提高光合作用的效率。Jin Chen博士(PI)和大卫克雷默博士(co-PI)旨在确定控制光合作用效率的基因和过程,以应对波动的环境条件,这对于理解和改善植物能量储存和提高作物产量至关重要。为了实现这一目标,研究团队必须解决各种相互作用的因素,这些因素在非常广泛的频率,持续时间和条件强度的动态范围内对环境因素作出反应。最近,动态环境表型成像仪(DEPI),一个新的平台,用于监测植物表型在动态条件下的反应已经在大卫克雷默博士(合作PI)的实验室开发。DEPI的初步数据揭示了以前未发现的影响,这些影响可归因于以前被认为没有已知功能的基因。 虽然植物表型的这些发展令人兴奋,但研究人员受到工具的限制,无法充分分析表型数据。消除这种限制是本项目的拟议目标。 Jin Chen博士(PI)和大卫克雷默博士(联合PI)将发现,开发和应用植物表型组学数据分析(PPDA)解决方案,将大量表型组学数据转化为知识或可测试的假设,以确定重要基因,从而提高动态环境条件下的光合作用效率。PPDA将确保高数据质量,从复杂的植物表型组学数据中识别和可视化重要基因,并将在更广泛的社区中推进知识发现。该项目由四个部分组成:目标1。开发、测试和应用表型组学数据质量控制程序,以识别异常数据,并区分它们是否来自噪音、伪影或更有趣的生物反应改变病例。目标2.开发、测试和应用表型组学模式发现算法,从光合作用表型组学数据中识别重要的能量相关基因。研究团队将开发动态表型网络构建和表型模块发现算法,将复杂的表型组学数据转化为可检验的假设,发现未知基因,并连接生物过程。目标3.开发一个数据可视化包,用于使用综合多维可视化方法显示复杂的表型组学数据,以促进科学发现能量相关基因对环境条件变化的响应。目标4。为应用PPDA检测G蛋白激活状态对光合效率的调节提供了理论依据。研究人员将在不断变化的环境条件下对拟南芥进行一系列G蛋白突变体的表型分析。然后,他们将应用PPDA来识别在动态环境条件的子集下具有涌现功能的基因。他们将解决G信号在波动检测中的作用。该项目的结果可在http://www.msu.edu/~jinchen/PPDA上查阅。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jin Chen其他文献
Multi-Focus Image Fusion Algorithm in Sensor Networks
传感器网络中的多焦点图像融合算法
- DOI:
10.1109/access.2018.2866020 - 发表时间:
2018 - 期刊:
- 影响因子:3.9
- 作者:
Ying Tong;Jin Chen - 通讯作者:
Jin Chen
Exploiting Domain Knowledge to Improve Biological Significance of Biclusters with Key Missing Genes
利用领域知识提高关键缺失基因双簇的生物学意义
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Jin Chen;Liping Ji;W. Hsu;K. Tan;S. Rhee - 通讯作者:
S. Rhee
Triple-functional albumin-based nanoparticles for combined chemotherapy and photodynamic therapy of pancreatic cancer with lymphatic metastases
三功能白蛋白纳米颗粒用于胰腺癌淋巴转移的联合化疗和光动力治疗
- DOI:
10.2147/ijn.s131295 - 发表时间:
2017-09 - 期刊:
- 影响因子:8
- 作者:
Yu Xinzhe;Di Yang;Gu Jichun;Guo Zhongyi;Li Hengchao;Fu Deliang;Jin Chen;Zhu Wenwen;Jin C - 通讯作者:
Jin C
Synthesis, crystal structure and photoluminescence of a three-coordinate Ag(I) complex
三配位Ag(I)配合物的合成、晶体结构和光致发光
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:2.2
- 作者:
Jin Chen;Xu-Lin Chen;Rong-Min Yu;Can-Zhong Lu - 通讯作者:
Can-Zhong Lu
Optimum dimensional synthesis for the working mechanism of a hydraulic excavator to improve the digging performance
液压挖掘机工作机构优化维度综合提高挖掘性能
- DOI:
10.1177/1464419317736675 - 发表时间:
2018-09 - 期刊:
- 影响因子:0
- 作者:
Zhihong Zou;Jin Chen;Xiaoping Pang - 通讯作者:
Xiaoping Pang
Jin Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jin Chen', 18)}}的其他基金
ABI Innovation: A New Framework to Analyze Plant Energy-related Phenomics Data
ABI Innovation:分析植物能量相关表型组数据的新框架
- 批准号:
1458556 - 财政年份:2015
- 资助金额:
$ 58.57万 - 项目类别:
Standard Grant
相似海外基金
New Physics in Artificial Spin Ice via Materials Innovation
通过材料创新实现人造旋转冰的新物理
- 批准号:
2419407 - 财政年份:2024
- 资助金额:
$ 58.57万 - 项目类别:
Continuing Grant
NSF Engines Development Award: Building a space-based innovation ecosystem in New Mexico (NM)
NSF 发动机发展奖:在新墨西哥州 (NM) 建立天基创新生态系统
- 批准号:
2314657 - 财政年份:2024
- 资助金额:
$ 58.57万 - 项目类别:
Cooperative Agreement
NSF Engines Development Award: Advancing a materials innovation ecosystem for manufacturing sustainability in upstate New York (NY)
NSF 发动机开发奖:推进材料创新生态系统,实现纽约州北部制造业的可持续发展
- 批准号:
2315307 - 财政年份:2024
- 资助金额:
$ 58.57万 - 项目类别:
Cooperative Agreement
Exploring sustainable growth models and innovation as a new growth strategy in declining industries
探索可持续增长模式和创新作为衰退行业的新增长战略
- 批准号:
23K01523 - 财政年份:2023
- 资助金额:
$ 58.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New GORDON RESEARCH CONFERENCE: Advanced Cell and Tissue Biomanufacturing: Technology Development and Innovation through Convergence
新戈登研究会议:先进细胞和组织生物制造:通过融合进行技术开发和创新
- 批准号:
10682943 - 财政年份:2023
- 资助金额:
$ 58.57万 - 项目类别:
New Physics in Artificial Spin Ice via Materials Innovation
通过材料创新实现人造旋转冰的新物理学
- 批准号:
2310275 - 财政年份:2023
- 资助金额:
$ 58.57万 - 项目类别:
Continuing Grant
Targeted Infusion Project: Curricular Innovation of Microbiology and Genetics Laboratories - New Strategies for Biology Student Success
定向输注项目:微生物学和遗传学实验室的课程创新——生物学学生成功的新策略
- 批准号:
2306045 - 财政年份:2023
- 资助金额:
$ 58.57万 - 项目类别:
Standard Grant
Implementation of EDI-D Principles and Open Communication Practices for Scientific Innovation and Dissemination - A New Canadian Connective Tissue Conference Workshop
实施 EDI-D 原则和科学创新和传播的开放式交流实践 - 加拿大新结缔组织会议研讨会
- 批准号:
487891 - 财政年份:2023
- 资助金额:
$ 58.57万 - 项目类别:
Miscellaneous Programs
Collaborative Research: CCRI: New: An Infrastructure for Sustainable Innovation and Research in Computer Science Education
合作研究:CCRI:新:计算机科学教育可持续创新和研究的基础设施
- 批准号:
2213790 - 财政年份:2022
- 资助金额:
$ 58.57万 - 项目类别:
Standard Grant
Creation of a New Unified Theory of Tactile Sensation for VR Innovation –Gestalts of Tactile, Heat and Pain Senses–
为 VR 创新创建新的统一触觉理论
- 批准号:
22K19791 - 财政年份:2022
- 资助金额:
$ 58.57万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




