The Dynamic Genome: Studying the Interplay between Local Strand-Passage and Reconnection

动态基因组:研究局部链通道和重新连接之间的相互作用

基本信息

  • 批准号:
    1716987
  • 负责人:
  • 金额:
    $ 29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Reconnection processes appear in a variety of settings at widely different scales, from microscopic DNA recombination to large-scale reconnection of vortices in fluid turbulence and magnetic reconnection of solar coronal loops. Experimental data show striking similarities between the pathways of topology simplification in newly replicated circular DNA plasmids by recombination and those in interlinked fluid vortices thus pointing to a universal process of unlinking by local reconnection. A drive toward topological simplification is ubiquitous in nature and this work will develop a mathematical understanding of the laws underlying it. Enzymes such as topoisomerases and recombinases are DNA-binding proteins able simplify the topology of circular DNA. They act by local crossing changes and local reconnection. The main objective of this project is to characterize the topological mechanism of DNA topology simplification using knot theory, low-dimensional topology and computer simulations. In pursuit of this research objective, the central hypothesis is that under normal conditions topoisomerases and recombinases follow optimal topological pathways of DNA unknotting and unlinking. The principal investigator will test this hypothesis through two specific aims. (1) Use techniques from low-dimensional topology, to find possible topological pathways of DNA unknotting and unlinking by type II topoisomerases and by recombinases. (2) Conduct computer simulations of DNA topology simplification by signed crossing changes and by local reconnection and explore connections to genome architecture. The PI and her group will be involved in a variety of dissemination and outreach activities, and are committed to increasing diversity in the Mathematical Sciences. The research will produce rigorous mathematical models for DNA unknotting and unlinking by local reconnection and signed crossing change, which will contribute to our understanding of the unknotting and unlinking mechanisms by topoisomerases and by recombinases. The enzymatic action can be modeled as local crossing changes, and as coherent or non-coherent band surgery, respectively. Assuming a chiral enzymatic action, this project will study signed crossing changes and characterize knots that can be unknotted with a single type of crossing change. Different minimal multi-step reconnection pathways will be identified between given pairs of knots or links. The research will extend results related to the nugatory crossing conjecture and analogous open questions in knot theory, which concerns the characterization of crossing changes and non-coherent band surgeries, which preserve the topological knot type. The proposed project will develop a computer model (a multiple Markov chain Monte Carlo algorithm) where DNA recombination at inversely repeated sites is modeled as non-coherent band surgery. The principal investigator will compute minimal recombination pathways and assess the efficiency of this form of topology simplification under different geometric and topological filters. Via simulations, the research will determine the transition probability networks for each method and choice of parameters for the models developed for signed crossing change and recombination of DNA. This will provide a ranking of the nodes and identify topology types with high-connectivity. An important focus is placed on the interplay of strand-passage and reconnection events.
重新连接过程出现在各种不同尺度的环境中,从微观DNA重组到流体湍流中的大规模涡旋重连和太阳日冕环的磁重连。实验数据表明,在新复制的环状DNA质粒的重组和互连的流体涡旋,从而指向一个普遍的过程中,局部重连的拓扑结构简化的途径之间的惊人的相似之处。拓扑简化的动力在自然界中无处不在,这项工作将发展其背后的规律的数学理解。拓扑异构酶和重组酶等酶是DNA结合蛋白,能够简化环状DNA的拓扑结构。它们通过局部交叉变化和局部重新连接来起作用。本研究的主要目的是利用纽结理论、低维拓扑学和计算机模拟来描述DNA拓扑简化的拓扑机制。为了实现这一研究目标,中心假设是在正常条件下拓扑异构酶和重组酶遵循DNA解结和解链的最佳拓扑途径。主要研究者将通过两个具体目标来检验这一假设。 (1)使用低维拓扑学技术,通过II型拓扑异构酶和重组酶寻找DNA解结和解链的可能拓扑途径。(2)通过符号交叉变化和局部重连进行DNA拓扑简化的计算机模拟,并探索与基因组结构的连接。PI和她的团队将参与各种传播和推广活动,并致力于增加数学科学的多样性。该研究将产生严格的数学模型,DNA解结和解链的局部重连接和符号交叉的变化,这将有助于我们了解解结和解链机制的拓扑异构酶和重组酶。酶的作用可以被建模为局部交叉变化,并作为相干或非相干带手术,分别。假设一个手性酶的行动,这个项目将研究签署交叉变化和特点的结,可以解开一个单一类型的交叉变化。不同的最小多步重联途径将被确定之间的给定对结或链接。该研究将扩展与nugulatory交叉猜想和纽结理论中类似的开放问题相关的结果,这些问题涉及交叉变化和非相干带手术的表征,这些手术保留了拓扑纽结类型。拟议的项目将开发一个计算机模型(多马尔可夫链蒙特卡罗算法),其中反向重复位点的DNA重组被建模为非相干带手术。主要研究者将计算最小的重组途径,并评估不同几何和拓扑过滤器下这种形式的拓扑简化的效率。通过模拟,研究将确定每种方法的转移概率网络以及为DNA的符号交叉变化和重组开发的模型的参数选择。这将提供节点的排名并识别具有高连接性的拓扑类型。一个重要的焦点是放在相互作用的链通道和重连事件。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Surgery on links of linking number zero and the Heegaard Floer $d$-invariant
对链接数字零和 Heegaard Floer $d$ 不变的链接进行手术
  • DOI:
    10.4171/qt/137
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Gorsky, Eugene;Liu, Beibei;Moore, Allison
  • 通讯作者:
    Moore, Allison
Modeling RNA:DNA Hybrids with Formal Grammars
使用形式语法对 RNA:DNA 杂交体进行建模
Quantitative Study of the Chiral Organization of the Phage Genome Induced by the Packaging Motor
  • DOI:
    10.1016/j.bpj.2020.03.030
  • 发表时间:
    2020-05-05
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Cruz, Brian;Zhu, Zihao;Vazquez, Mariel
  • 通讯作者:
    Vazquez, Mariel
Distance one lens space fillings and band surgery on the trefoil knot
  • DOI:
    10.2140/agt.2019.19.2439
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Tye Lidman;Allison H. Moore;M. Vázquez
  • 通讯作者:
    Tye Lidman;Allison H. Moore;M. Vázquez
Recent advances on the non-coherent band surgery model for site-specific recombination
  • DOI:
    10.1090/conm/746/15004
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allison H. Moore;M. Vázquez
  • 通讯作者:
    Allison H. Moore;M. Vázquez
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mariel Vazquez其他文献

Mariel Vazquez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mariel Vazquez', 18)}}的其他基金

DMS/NIGMS 2: Collaborative Research: Modeling R-Loop Formation and Topology Using Braids and Graphs Coupled with Single-Molecule Footprinting
DMS/NIGMS 2:协作研究:使用辫子和图与单分子足迹相结合的 R 环形成和拓扑建模
  • 批准号:
    2054347
  • 财政年份:
    2021
  • 资助金额:
    $ 29万
  • 项目类别:
    Continuing Grant
Collaborative Research: DNA Packing of Bacteriophages: Liquid Crystal Modeling through Analysis, Knot Theory and Numerical Simulation.
合作研究:噬菌体的 DNA 包装:通过分析、结理论和数值模拟进行液晶建模。
  • 批准号:
    1817156
  • 财政年份:
    2018
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
CAREER: Topological mechanism of DNA unlinking by the XerCD-FtsK system
职业:XerCD-FtsK 系统解链 DNA 的拓扑机制
  • 批准号:
    1519375
  • 财政年份:
    2014
  • 资助金额:
    $ 29万
  • 项目类别:
    Continuing Grant
CAREER: Topological mechanism of DNA unlinking by the XerCD-FtsK system
职业:XerCD-FtsK 系统解链 DNA 的拓扑机制
  • 批准号:
    1057284
  • 财政年份:
    2011
  • 资助金额:
    $ 29万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于Pan-genome技术的沙门氏菌血清型特异性基因挖掘、功能分析及分子鉴定
  • 批准号:
    31360388
  • 批准年份:
    2013
  • 资助金额:
    50.0 万元
  • 项目类别:
    地区科学基金项目
基于Genome mining技术研究抑制表皮葡萄球菌生物膜形成的次级代谢产物
  • 批准号:
    21242003
  • 批准年份:
    2012
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
基于Pan-genome技术探究问号钩端螺旋体不同血清型致病性差异的遗传基础
  • 批准号:
    81171587
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Single-cell multiomic methods for studying genome structure and function
研究基因组结构和功能的单细胞多组学方法
  • 批准号:
    10884769
  • 财政年份:
    2023
  • 资助金额:
    $ 29万
  • 项目类别:
Computational methods for studying single-cell 3D genome
研究单细胞 3D 基因组的计算方法
  • 批准号:
    10570830
  • 财政年份:
    2022
  • 资助金额:
    $ 29万
  • 项目类别:
Computational methods for studying single-cell 3D genome
研究单细胞 3D 基因组的计算方法
  • 批准号:
    10392079
  • 财政年份:
    2022
  • 资助金额:
    $ 29万
  • 项目类别:
HIGH THROUGHPUT GENOTYPING AND DNA SEQUENCING FOR STUDYING THE GENETIC CONTRIBUTIONS TO HUMAN HEALTH AND DISEASE: Whole Genome Sequencing of Bilateral Cleft Lip and Palate families from Africa
用于研究对人类健康和疾病的遗传贡献的高通量基因分型和 DNA 测序:非洲双侧唇裂和腭裂家族的全基因组测序
  • 批准号:
    10498645
  • 财政年份:
    2021
  • 资助金额:
    $ 29万
  • 项目类别:
HIGH THROUGHPUT GENOTYPING AND DNA SEQUENCING FOR STUDYING THE GENETIC CONTRIBUTIONS TO HUMAN HEALTH AND DISEASE: WHOLE GENOME SEQUENCING, 30X FOR NEI
用于研究人类健康和疾病的遗传贡献的高通量基因分型和 DNA 测序:全基因组测序,NEI 30X
  • 批准号:
    10506205
  • 财政年份:
    2021
  • 资助金额:
    $ 29万
  • 项目类别:
Dissecting the pathogenesis and outcomes of PSC using multi-omics by studying the exposome and genome
通过研究暴露组和基因组,利用多组学剖析 PSC 的发病机制和结果
  • 批准号:
    10453649
  • 财政年份:
    2018
  • 资助金额:
    $ 29万
  • 项目类别:
Studying the function of human genetic variation in the light of 3D genome organization
根据 3D 基因组组织研究人类遗传变异的功能
  • 批准号:
    10624054
  • 财政年份:
    2018
  • 资助金额:
    $ 29万
  • 项目类别:
Dissecting the pathogenesis and outcomes of PSC using multi-omics by studying the exposome and genome
通过研究暴露组和基因组,利用多组学剖析 PSC 的发病机制和结果
  • 批准号:
    10246292
  • 财政年份:
    2018
  • 资助金额:
    $ 29万
  • 项目类别:
Genome sequencing and transgenesis of a heteropteran insect Nysius plebeius for studying bacteriocyte-associated symbiosis
用于研究细菌细胞相关共生的异翅目昆虫 Nysius plebeius 的基因组测序和转基因
  • 批准号:
    26840116
  • 财政年份:
    2014
  • 资助金额:
    $ 29万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The transcriptome, genome and metagenome of Acropora millepora: a model system for studying coral health and disease
千叶鹿角的转录组、基因组和宏基因组:研究珊瑚健康和疾病的模型系统
  • 批准号:
    DP1095343
  • 财政年份:
    2010
  • 资助金额:
    $ 29万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了