CCF-BSF: AF:Small: Time-Message Tradeoffs in Distributed Algorithms
CCF-BSF:AF:小:分布式算法中的时间消息权衡
基本信息
- 批准号:1717075
- 负责人:
- 金额:$ 46.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Real-world distributed communication networks such as the Internet, peer-to-peer networks, ad hoc wireless and sensor networks as well as data center networks used for large-scale data processing are an integral part of today's digital society. Distributed/decentralized algorithms underlie the efficient operation of these networks, e.g., distributed shortest paths algorithms are used for routing in the Internet, and distributed graph algorithms are used for finding communities in social networks. Hence, designing and analyzing efficient distributed algorithms is an important research task which will lead to faster and more resource-efficient performance in real-world networks. To address the more realistic situations, this project will aim to design distributed algorithms which simultaneously optimize the (1) running time and (2) number of messages. This research will help in the design of efficient and scalable distributed algorithms with provable performance guarantees. It can impact algorithm design in peer-to-peer and ad hoc wireless sensor networks, and distributed processing of large-scale data. The PI plans to develop a new course and a textbook on distributed network algorithms that is closely related to the research proposed above. University of Houston is a designated Hispanic serving public Tier 1 research institution and the PI will make efforts to involve minority and underrepresented students in research.Two fundamental performance measures of a distributed algorithm that determine its efficiency are the running time and the number of messages used by the algorithm. Research in the last three decades has focused to a large extent on optimizing either one of the two measures separately, typically at the cost of the other. However, in many real-world applications, it is important to design distributed algorithms that simultaneously optimize both the measures. This project will investigate how distributed algorithms can be designed that work well under both measures. Furthermore, it will study the precise relationship between the two measures, in particular, how one can trade off one measure with respect to the other measure. This project will study time-message tradeoffs in distributed algorithms for various fundamental problems, including leader election, minimum spanning tree, shortest paths, and random walks. Specific goals of the project are: (1) Given a bound on one measure, design distributed algorithms that are optimal with respect to the other measure; (2) Obtain lower bounds on the complexity of one measure while fixing the other measure; (3) Obtain tradeoff relationships that characterize the dependence of one measure on the other. (4) Obtain efficient distributed algorithms that operate on large-scale graphs.
现实世界的分布式通信网络,如互联网、对等网络、自组织无线和传感器网络以及用于大规模数据处理的数据中心网络,是当今数字社会不可或缺的一部分。分布式/分散式算法是这些网络的有效操作的基础,例如,分布式最短路径算法用于因特网中的路由选择,而分布式图算法用于在社交网络中寻找社区。因此,设计和分析高效的分布式算法是一个重要的研究任务,这将导致更快,更资源有效的性能在现实世界的网络。为了解决更现实的情况下,这个项目的目标是设计分布式算法,同时优化(1)运行时间和(2)消息的数量。这项研究将有助于设计有效的和可扩展的分布式算法与可证明的性能保证。它可以影响对等和ad hoc无线传感器网络中的算法设计,以及大规模数据的分布式处理。PI计划开发一门新的课程和一本关于分布式网络算法的教科书,这与上面提出的研究密切相关。休斯顿大学是一个指定的西班牙裔服务的公共一级研究机构,PI将努力让少数民族和代表性不足的学生参与研究。决定其效率的分布式算法的两个基本性能指标是运行时间和算法使用的消息数。过去三十年的研究在很大程度上集中在分别优化两种措施中的一种,通常是以另一种为代价。然而,在许多实际应用中,重要的是设计分布式算法,同时优化这两个措施。本项目将研究如何设计分布式算法,使其在这两种措施下都能很好地工作。此外,它将研究这两项措施之间的确切关系,特别是如何在一项措施与另一项措施之间进行权衡。这个项目将研究各种基本问题的分布式算法中的时间-消息权衡,包括领导选举,最小生成树,最短路径和随机游走。该项目的具体目标是:(1)给定一个度量的边界,设计相对于另一个度量最优的分布式算法;(2)在固定另一个度量的同时获得一个度量复杂性的下限;(3)获得一个度量对另一个度量依赖性的权衡关系。(4)获得在大规模图上运行的高效分布式算法。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Brief Announcement: Distributed MST Computation in the Sleeping Model: Awake-Optimal Algorithms and Lower Bounds
简短公告:睡眠模型中的分布式 MST 计算:清醒最优算法和下界
- DOI:10.1145/3519270.3538459
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Augustine, John;Moses, William K.;Pandurangan, Gopal
- 通讯作者:Pandurangan, Gopal
Time-Message Trade-Offs in Distributed Algorithms
分布式算法中的时间与消息权衡
- DOI:10.4230/lipics.disc.2018.32
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Gmyr, Robert;Pandurangan, Gopal
- 通讯作者:Pandurangan, Gopal
Symmetry Breaking in the CONGEST Model: Time- and Message-Efficient Algorithms for Ruling Sets
CONGEST 模型中的对称性破缺:规则集的时间和消息高效算法
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Pai, S;Pandurangan, G;Pemmaraju, S.;Riaz, T;Robinson, P.
- 通讯作者:Robinson, P.
Sleeping is Efficient: MIS in O(1)-rounds Node-averaged Awake Complexity
睡眠是高效的:O(1) 轮中的 MIS 节点平均清醒复杂度
- DOI:10.1145/3382734.3405718
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Chatterjee, Soumyottam;Gmyr, Robert;Pandurangan, Gopal
- 通讯作者:Pandurangan, Gopal
The Complexity of Leader Election: A Chasm at Diameter Two
领导者选举的复杂性:直径二的鸿沟
- DOI:10.1145/3154273.3154308
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Chatterjee, Soumyottam;Pandurangan, Gopal;Robinson, Peter
- 通讯作者:Robinson, Peter
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gopal Pandurangan其他文献
On the hardness of optimization in power-law graphs
论幂律图中优化的难度
- DOI:
10.1016/j.tcs.2007.12.007 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Alessandro Ferrante;Gopal Pandurangan;Kihong Park - 通讯作者:
Kihong Park
Towards Communication-Efficient Peer-to-Peer Networks
迈向高效通信的点对点网络
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Khalid Hourani;W. Moses;Gopal Pandurangan - 通讯作者:
Gopal Pandurangan
Ballast: A Ball-Based Algorithm for Structural Motifs
镇流器:一种基于球的结构图案算法
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Lu He;Fabio Vandin;Gopal Pandurangan;C. Bailey - 通讯作者:
C. Bailey
Xheal: a localized self-healing algorithm using expanders
Xheal:使用扩展器的局部自愈算法
- DOI:
10.1007/s00446-013-0192-1 - 发表时间:
2014 - 期刊:
- 影响因子:1.3
- 作者:
Gopal Pandurangan;Amitabh Trehan - 通讯作者:
Amitabh Trehan
Energy-Efficient Distributed Minimum Spanning Tree Construction : Tight Bounds and Algorithms
节能分布式最小生成树构建:紧界和算法
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Yongwook Choi;Maleq Khan;V. S. A. Kumar;Gopal Pandurangan - 通讯作者:
Gopal Pandurangan
Gopal Pandurangan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gopal Pandurangan', 18)}}的其他基金
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402837 - 财政年份:2024
- 资助金额:
$ 46.26万 - 项目类别:
Continuing Grant
BIGDATA: Collaborative Research: F: Efficient Distributed Computation of Large-Scale Graph Problems in Epidemiology and Contagion Dynamics
BIGDATA:协作研究:F:流行病学和传染动力学中大规模图问题的高效分布式计算
- 批准号:
1633720 - 财政年份:2016
- 资助金额:
$ 46.26万 - 项目类别:
Standard Grant
BSF:2014424:Time-Message Tradeoffs in Distributed Algorithms
BSF:2014424:分布式算法中的时间消息权衡
- 批准号:
1540512 - 财政年份:2015
- 资助金额:
$ 46.26万 - 项目类别:
Standard Grant
AF: Small: Distributed Algorithmic Foundations of Dynamic Networks
AF:小:动态网络的分布式算法基础
- 批准号:
1527867 - 财政年份:2015
- 资助金额:
$ 46.26万 - 项目类别:
Standard Grant
AF:Small:Collaborative Research: Algorithmic Problems in Protein Structure Studies
AF:Small:协作研究:蛋白质结构研究中的算法问题
- 批准号:
0915916 - 财政年份:2009
- 资助金额:
$ 46.26万 - 项目类别:
Standard Grant
Efficient Distributed Approximation Algorithms
高效的分布式逼近算法
- 批准号:
0830476 - 财政年份:2008
- 资助金额:
$ 46.26万 - 项目类别:
Standard Grant
相似国自然基金
枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
- 批准号:31871988
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
- 批准号:61774171
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
- 批准号:38870708
- 批准年份:1988
- 资助金额:3.0 万元
- 项目类别:面上项目
相似海外基金
CCF-BSF: AF: Small: Collaborative Research: Practice-Friendly Theory and Algorithms for Linear Regression Problems
CCF-BSF:AF:小型:协作研究:线性回归问题的实用理论和算法
- 批准号:
1814041 - 财政年份:2018
- 资助金额:
$ 46.26万 - 项目类别:
Standard Grant
CCF-BSF: AF: CIF: Small: Low Complexity Error Correction
CCF-BSF:AF:CIF:小:低复杂性纠错
- 批准号:
1814629 - 财政年份:2018
- 资助金额:
$ 46.26万 - 项目类别:
Standard Grant
CCF-BSF: AF: Small: Algorithms for Interactive Learning
CCF-BSF:AF:小型:交互式学习算法
- 批准号:
1813160 - 财政年份:2018
- 资助金额:
$ 46.26万 - 项目类别:
Standard Grant
CCF-BSF: AF: Small: Collaborative Research: Practice-Friendly Theory and Algorithms for Linear Regression Problems
CCF-BSF:AF:小型:协作研究:线性回归问题的实用理论和算法
- 批准号:
1813374 - 财政年份:2018
- 资助金额:
$ 46.26万 - 项目类别:
Standard Grant
CCF-BSF: AF: Small: Convex and Non-Convex Distributed Learning
CCF-BSF:AF:小:凸和非凸分布式学习
- 批准号:
1718970 - 财政年份:2018
- 资助金额:
$ 46.26万 - 项目类别:
Standard Grant
CCF-BSF: AF: Small: New Randomized Approaches in Approximation Algorithms
CCF-BSF:AF:小:近似算法中的新随机方法
- 批准号:
1717947 - 财政年份:2017
- 资助金额:
$ 46.26万 - 项目类别:
Standard Grant
CCF-BSF: AF: Small: Collaborative Research: The Dictionary Problem Considered
CCF-BSF:AF:小型:协作研究:考虑的字典问题
- 批准号:
1716252 - 财政年份:2017
- 资助金额:
$ 46.26万 - 项目类别:
Standard Grant
CCF-BSF: AF: Small: Collaborative Research: The Dictionary Problem Considered
CCF-BSF:AF:小型:协作研究:考虑的字典问题
- 批准号:
1715777 - 财政年份:2017
- 资助金额:
$ 46.26万 - 项目类别:
Standard Grant
CCF-BSF: AF: Small: Coding for Distributed Computing
CCF-BSF:AF:小型:分布式计算编码
- 批准号:
1618280 - 财政年份:2016
- 资助金额:
$ 46.26万 - 项目类别:
Standard Grant
CCF-BSF: AF: Small: Collaborative Research: Algorithmic Techniques for Inferring Transmission Networks from Noisy Sequencing Data
CCF-BSF:AF:小型:协作研究:从噪声排序数据推断传输网络的算法技术
- 批准号:
1619110 - 财政年份:2016
- 资助金额:
$ 46.26万 - 项目类别:
Standard Grant