Collaborative Research: Using Surface Information for Quantitative Modeling of the Subsurface
协作研究:利用地表信息进行地下定量建模
基本信息
- 批准号:1719670
- 负责人:
- 金额:$ 27.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Surface connections, such as those among channels in river networks, are important for understanding the development and evolution of landscapes, such as densely populated coastal river deltas. Connections in the subsurface are critical in understanding groundwater flow and solute transport. Preferential flowpaths, in fact, can quickly deliver contaminants to water supply wells, a particularly important problem in densely populated coastal areas. Establishing a quantitative link between surface and subsurface patterns will greatly advance our capability to predict the movement of contaminants in groundwater, thus improving access to clean water and limiting pollution and health risks. We propose to investigate quantitatively how the dynamics of surface networks create subsurface networks, and thus determine how surface information can be used to predict properties of the subsurface. This will enable us to better predict sustainability and manage water resources in densely populated deltas such as the Ganges-Brahmaputra Delta, where high concentrations of arsenic are widespread in the groundwater of the upper delta, and salinity problems are pervasive in the lower delta. The models and data analysis tools developed as part of this project will be released as open source and we will collaborate with Bangladeshi institutions to disseminate our findings. Our driving hypothesis is that the 3D subsurface structure can be predicted by combining information on (i) the modern surface network snapshot, (ii) the surface network kinematics (i.e., its temporal evolution), and (iii) accommodation and net sedimentation. We further hypothesize that (iv) the nature of the surface-to-subsurface translation exerts a major influence on structural connectivity and solute transport through the resulting aquifer system. Our goal is to develop new methods to translate surface channel networks to obtain quantitative models of subsurface architecture and flow and transport processes. We will perform this analysis with a combination of experimental, numerical modeling, and observational approaches and we will verify our findings by collecting lithologic and geochemical data in the Ganges-Brahmaputra Delta. Our findings will provide critical information about the predictability of subsurface structure given the surface channel network and its kinematics, and will allow quantification of the factors influencing this predictability. The proposed work will also further the development of quantitative metrics of connectivity of surface networks and subsurface 3D structures and flowpaths, and improve our ability to model the subsurface structure of large deltaic systems where spatial heterogeneity and large spatial extent prevent full characterization via field observations. By extending this structural understanding to dynamic solute transport behavior, the proposed research will enhance the predictability of contaminant migration in highly heterogeneous systems.
地表连接,如河流网络中的河道之间的连接,对于理解景观的发展和演变,如人口密集的沿海河流三角洲,非常重要。地下水的连通性对于理解地下水流和溶质运移至关重要。事实上,优先流路可以快速地将污染物输送到供水威尔斯井,这在人口密集的沿海地区是一个特别重要的问题。在地表和地下模式之间建立定量联系,将大大提高我们预测地下水中污染物移动的能力,从而改善清洁水的获取,限制污染和健康风险。我们建议定量研究如何动态的表面网络创建地下网络,从而确定如何表面的信息可以用来预测地下的属性。这将使我们能够更好地预测可持续性和管理人口密集的三角洲,如恒河-雅鲁藏布江三角洲,其中高浓度的砷在上三角洲的地下水中广泛存在,盐度问题在下三角洲普遍存在。作为该项目的一部分开发的模型和数据分析工具将作为开源发布,我们将与孟加拉国机构合作传播我们的研究结果。我们的驱动假设是3D地下结构可以通过组合以下信息来预测:(i)现代表面网络快照,(ii)表面网络运动学(即,其时间演变),和(iii)住宿和净沉降。我们进一步假设,(四)表面到地下翻译的性质产生了重大影响,通过所产生的含水层系统的结构连通性和溶质运移。我们的目标是开发新的方法来翻译表面通道网络,以获得定量模型的地下结构和流动和运输过程。我们将结合实验,数值模拟和观测方法进行分析,并通过收集恒河-雅鲁藏布江三角洲的岩性和地球化学数据来验证我们的研究结果。我们的研究结果将提供关键信息的可预测性的地下结构给定的表面通道网络及其运动学,并将允许量化的因素影响这种可预测性。拟议的工作还将进一步发展的定量指标的连接性的表面网络和地下三维结构和流路,并提高我们的能力,模拟地下结构的大型三角洲系统的空间异质性和大的空间范围,防止通过现场观察充分表征。通过将这种结构理解扩展到动态溶质运移行为,拟议的研究将提高高度非均质系统中污染物迁移的可预测性。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global rates and patterns of channel migration in river deltas
河流三角洲河道迁移的全球速率和模式
- DOI:10.1073/pnas.2103178118
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Jarriel, Teresa;Swartz, John;Passalacqua, Paola
- 通讯作者:Passalacqua, Paola
Reconstructing subsurface sandbody connectivity from temporal evolution of surface networks
从地表网络的时间演化重建地下砂体的连通性
- DOI:10.1111/bre.12668
- 发表时间:2022
- 期刊:
- 影响因子:3.2
- 作者:Steel, Elisabeth;Paola, Chris;Chadwick, Austin J.;Hariharan, Jayaram;Passalacqua, Paola;Xu, Zhongyuan;Michael, Holly A.;Brommecker, Hannah;Hajek, Elizabeth A.
- 通讯作者:Hajek, Elizabeth A.
RivGraph: Automatic extraction and analysis of river and delta channel network topology
- DOI:10.21105/joss.02952
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:J. Schwenk;J. Hariharan
- 通讯作者:J. Schwenk;J. Hariharan
Channel Migration in Experimental River Networks Mapped by Particle Image Velocimetry
- DOI:10.1029/2021jf006300
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:A. Chadwick;E. Steel;R. Williams‐Schaetzel;P. Passalacqua;C. Paola
- 通讯作者:A. Chadwick;E. Steel;R. Williams‐Schaetzel;P. Passalacqua;C. Paola
Effects of Geologic Setting on Contaminant Transport in Deltaic Aquifers
- DOI:10.1029/2022wr031943
- 发表时间:2022-08
- 期刊:
- 影响因子:5.4
- 作者:Zhongyuan Xu;J. Hariharan;P. Passalacqua;E. Steel;A. Chadwick;C. Paola;A. Paldor;H. Michael
- 通讯作者:Zhongyuan Xu;J. Hariharan;P. Passalacqua;E. Steel;A. Chadwick;C. Paola;A. Paldor;H. Michael
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paola Passalacqua其他文献
c-HAND: near real-time coastal flood mapping
c-HAND:近实时沿海洪水测绘
- DOI:
10.3389/frwa.2024.1329109 - 发表时间:
2024 - 期刊:
- 影响因子:2.9
- 作者:
Mark Wang;Paola Passalacqua;Shukai Cai;Clint Dawson - 通讯作者:
Clint Dawson
Challenges for compound coastal flood risk management in a warming climate: a case study of the Gulf Coast of the United States
气候变暖下复合沿海洪水风险管理的挑战:以美国墨西哥湾沿岸为例
- DOI:
10.3389/frwa.2024.1405603 - 发表时间:
2024 - 期刊:
- 影响因子:2.9
- 作者:
Michael Lewis;Hamed Moftakhari;Paola Passalacqua - 通讯作者:
Paola Passalacqua
A comparative analysis of national water model versions 2.1 and 3.0 reveals advances and challenges in streamflow predictions during storm events
对国家水模型版本 2.1 和 3.0 的比较分析揭示了暴雨事件期间水流预测的进展和挑战
- DOI:
10.1016/j.ejrh.2025.102196 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:5.000
- 作者:
Sujana Timilsina;Paola Passalacqua - 通讯作者:
Paola Passalacqua
River-floodplain connectivity and residence times controlled by topographic bluffs along a backwater transition
沿回水过渡区的地形悬崖控制河流-洪泛区的连通性和停留时间
- DOI:
10.3389/frwa.2023.1306481 - 发表时间:
2024 - 期刊:
- 影响因子:2.9
- 作者:
N. Tull;A. Moodie;Paola Passalacqua - 通讯作者:
Paola Passalacqua
Integrating perspectives: Multi-sectoral insights into U.S. Gulf Coast flood governance
整合观点:对美国墨西哥湾沿岸洪水治理的多部门见解
- DOI:
10.1016/j.ijdrr.2025.105662 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:4.500
- 作者:
Koorosh Azizi;Yuer Wang;Olivia Enriquez;Paola Passalacqua;Dev Niyogi;R. Patrick Bixler - 通讯作者:
R. Patrick Bixler
Paola Passalacqua的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paola Passalacqua', 18)}}的其他基金
Transport Mechanisms across Geomorphic Transitions: Capturing Spatial and Temporal Evolution of River-Floodplain Connectivity within the Trinity River System
跨地貌转变的传输机制:捕捉三一河系统内河流-洪泛区连通性的时空演变
- 批准号:
2150975 - 财政年份:2022
- 资助金额:
$ 27.72万 - 项目类别:
Standard Grant
Collaborative Proposal: EarthCube RCN: Connecting the Earth Science and Cyberinfrastructure communities to advance the analysis of high resolution topography data
合作提案:EarthCube RCN:连接地球科学和网络基础设施社区,推进高分辨率地形数据的分析
- 批准号:
1642611 - 财政年份:2017
- 资助金额:
$ 27.72万 - 项目类别:
Standard Grant
Coastal SEES Collaborative Research: Multi-scale modeling and observations of landscape dynamics, mass balance, and network connectivity for a sustainable Ganges-Brahmaputra delta
沿海 SEES 合作研究:可持续恒河-雅鲁藏布江三角洲的景观动态、质量平衡和网络连通性的多尺度建模和观测
- 批准号:
1600222 - 财政年份:2016
- 资助金额:
$ 27.72万 - 项目类别:
Standard Grant
RAPID: Analysis of the May 2015 Texas Flood with a Connectivity Framework and High Resolution Topography Data
RAPID:使用连接框架和高分辨率地形数据分析 2015 年 5 月德克萨斯州洪水
- 批准号:
1547200 - 财政年份:2015
- 资助金额:
$ 27.72万 - 项目类别:
Standard Grant
CAREER: The Delta Connectome: Structure and Transport Dynamic of Delta Networks across Scales and Disciplines
职业:达美连接组:跨规模和学科的达美网络的结构和传输动态
- 批准号:
1350336 - 财政年份:2014
- 资助金额:
$ 27.72万 - 项目类别:
Standard Grant
Collaborative Research: Climatological, Vegetational, and Human-Related Controls on Channelization and Shallow Landsliding Quantified Through Objective Analysis of LiDAR Data
合作研究:通过激光雷达数据的客观分析量化渠道化和浅层滑坡的气候、植被和人类相关控制
- 批准号:
1063228 - 财政年份:2011
- 资助金额:
$ 27.72万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319097 - 财政年份:2024
- 资助金额:
$ 27.72万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 27.72万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 27.72万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
- 批准号:
2334798 - 财政年份:2024
- 资助金额:
$ 27.72万 - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344259 - 财政年份:2024
- 资助金额:
$ 27.72万 - 项目类别:
Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
- 批准号:
2344722 - 财政年份:2024
- 资助金额:
$ 27.72万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 27.72万 - 项目类别:
Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
- 批准号:
2412294 - 财政年份:2024
- 资助金额:
$ 27.72万 - 项目类别:
Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
- 批准号:
2342747 - 财政年份:2024
- 资助金额:
$ 27.72万 - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344260 - 财政年份:2024
- 资助金额:
$ 27.72万 - 项目类别:
Standard Grant