Collaborative Research: Overcoming Order Reduction and Stability Restrictions in High-Order Time-Stepping
协作研究:克服高阶时间步长中的阶数降低和稳定性限制
基本信息
- 批准号:1719693
- 负责人:
- 金额:$ 19.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops new computational approaches that remedy fundamental accuracy shortcomings of existing time-stepping methods, and increase their stability and robustness. A wide variety of practical applications, including fluid flows, quantum physics, heat and neutron transport, materials science, and many complex multi-physics problems, require the numerical simulation of models that involve a time evolution. This time evolution must be performed in a way that the high accuracy of modern computational methods is retained. This project addresses fundamental challenges that arise in this context, and delivers superior numerical methods that could replace existing time-stepping schemes currently used in computational science and engineering practice. This project provides a multi-institution collaboration, including two early-career researchers, and it involves the training of a PhD student.The research in this project addresses two aspects in high-order time-stepping: order reduction in Runge-Kutta methods; and unconditionally stable ImEx linear multistep methods. A specific focus lies on time-stepping for partial differential equations. For those, order reduction can be associated with numerical boundary layers, caused by multi-stage time-stepping schemes. Based on this geometric understanding of the phenomenon, remedies for order reduction are developed. This includes the concept of weak stage order, as well as modified boundary conditions. An alternative avenue to avoid order reduction is provided by multistep methods. The key challenge here is their rather restrictive stability behavior. Based on a new stability theory for ImEx multistep methods, this project develops novel schemes that can, for certain problems, achieve unconditional stability. The new schemes can be included into many existing computational codes via a simple modification of the time-stepping coefficients, thus enabling practitioners to select the time step based solely on accuracy considerations.
该项目开发了新的计算方法,弥补了现有时间推进方法的基本精度缺陷,并增加了它们的稳定性和稳健性。各种实际应用,包括流体流动、量子物理、热和中子输运、材料科学以及许多复杂的多物理问题,都需要对涉及时间演化的模型进行数值模拟。这种时间演化必须以一种保留现代计算方法的高精度的方式进行。该项目解决了在这种情况下出现的基本挑战,并提供了优秀的数值方法,可以取代目前在计算科学和工程实践中使用的现有时间步进方法。这个项目提供了一个多机构合作,包括两个职业生涯早期的研究人员,它包括一个博士研究生的培训。这个项目的研究涉及两个方面的高阶时间步长:Runge-Kutta方法的降阶和无条件稳定的IMEX线性多步方法。一个特别的焦点在于偏微分方程组的时间步长。对于这些问题,降阶可以与由多阶段时间步长格式引起的数值边界层相联系。基于对这一现象的几何理解,提出了降阶的补救措施。这包括弱阶段顺序的概念,以及修改后的边界条件。多步法提供了避免降阶的另一种途径。这里的关键挑战是它们相当严格的稳定行为。基于IMEX多步法的一个新的稳定性理论,这个项目开发了新的格式,对于某些问题,可以获得无条件的稳定性。通过对时间步进系数的简单修改,新的方案可以被包括在许多现有的计算代码中,从而使实践者能够仅基于精度考虑来选择时间步长。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unconditional Stability for Multistep ImEx Schemes: Theory
- DOI:10.1137/16m1094324
- 发表时间:2016-09
- 期刊:
- 影响因子:0
- 作者:R. Rosales;Benjamin Seibold;D. Shirokoff;Dong Zhou
- 通讯作者:R. Rosales;Benjamin Seibold;D. Shirokoff;Dong Zhou
DIRK Schemes with High Weak Stage Order
具有高弱阶段顺序的 DIRK 方案
- DOI:10.1007/978-3-030-39647-3_36
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Ketcheson, D.;Seibold, B.;Shirokoff, D.;Zhou, D.
- 通讯作者:Zhou, D.
Oscillatory thermocapillary instability of a film heated by a thick substrate
- DOI:10.1017/jfm.2019.417
- 发表时间:2019-02
- 期刊:
- 影响因子:3.7
- 作者:W. Batson;L. Cummings;D. Shirokoff;L. Kondic
- 通讯作者:W. Batson;L. Cummings;D. Shirokoff;L. Kondic
Unconditional stability for multistep ImEx schemes: Practice
- DOI:10.1016/j.jcp.2018.09.044
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Benjamin Seibold;D. Shirokoff;Dong Zhou
- 通讯作者:Benjamin Seibold;D. Shirokoff;Dong Zhou
Approximate Global Minimizers to Pairwise Interaction Problems via Convex Relaxation
- DOI:10.1137/16m1069146
- 发表时间:2018-01-01
- 期刊:
- 影响因子:2.1
- 作者:Bandegi, Mandi;Shirokoff, David
- 通讯作者:Shirokoff, David
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Shirokoff其他文献
Algebraic conditions for stability in Runge-Kutta methods and their certification via semidefinite programming
- DOI:
10.1016/j.apnum.2024.08.015 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Austin Juhl;David Shirokoff - 通讯作者:
David Shirokoff
David Shirokoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Shirokoff', 18)}}的其他基金
Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
- 批准号:
2309727 - 财政年份:2023
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant
Collaborative Research: Euler-Based Time-Stepping with Optimal Stability and Accuracy for Partial Differential Equations
协作研究:具有最佳稳定性和精度的偏微分方程基于欧拉的时间步进
- 批准号:
2012268 - 财政年份:2020
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Understanding and overcoming the impediments to high-risk, high-return science
合作研究:理解并克服高风险、高回报科学的障碍
- 批准号:
2346644 - 财政年份:2024
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and overcoming the impediments to high-risk, high-return science
合作研究:理解并克服高风险、高回报科学的障碍
- 批准号:
2346645 - 财政年份:2024
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant
Collaborative Research: Overcoming Isolation and Scholarly Devaluation by Bolstering the Collective Agency of Black Discipline-Based Education Researchers
合作研究:通过支持黑人学科教育研究人员的集体机构来克服孤立和学术贬值
- 批准号:
2315023 - 财政年份:2023
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant
Collaborative Research: Overcoming Isolation and Scholarly Devaluation by Bolstering the Collective Agency of Black Discipline-Based Education Researchers
合作研究:通过支持黑人学科教育研究人员的集体机构来克服孤立和学术贬值
- 批准号:
2315024 - 财政年份:2023
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant
D3SC: Collaborative Research: Overcoming Challenges in Classification Near the Limit of Determination
D3SC:协作研究:克服接近确定极限的分类挑战
- 批准号:
2003867 - 财政年份:2020
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant
D3SC: Collaborative Research: Overcoming Challenges in Classification Near the Limit of Determination
D3SC:协作研究:克服接近确定极限的分类挑战
- 批准号:
2003839 - 财政年份:2020
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant
EARS: Collaborative Research: Overcoming Propagation Challenges at Millimeter-Wave Frequencies via Reconfigurable Antennas
EARS:协作研究:通过可重构天线克服毫米波频率的传播挑战
- 批准号:
2029973 - 财政年份:2020
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant
EAGER: AI-DCL: Collaborative Research: Understanding and Overcoming Biases in STEM Education using Machine Learning
EAGER:AI-DCL:协作研究:利用机器学习理解和克服 STEM 教育中的偏见
- 批准号:
1926925 - 财政年份:2019
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant
EAGER: AI-DCL: Collaborative Research: Understanding and Overcoming Biases in STEM Education Using Machine Learning
EAGER:AI-DCL:协作研究:利用机器学习理解和克服 STEM 教育中的偏见
- 批准号:
1926930 - 财政年份:2019
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant
EAGER AI-DCL Collaborative Research: Understanding and Overcoming Biases in STEM Education Using Machine Learning
EAGER AI-DCL 合作研究:利用机器学习理解和克服 STEM 教育中的偏见
- 批准号:
1926929 - 财政年份:2019
- 资助金额:
$ 19.58万 - 项目类别:
Standard Grant