EAGER: Optical Measurement and Analysis of Dynamic Large Deformations of Mechanical Metamaterials

EAGER:机械超材料动态大变形的光学测量和分析

基本信息

  • 批准号:
    1719728
  • 负责人:
  • 金额:
    $ 20.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

This EArly-concept Grant for Exploratory Research (EAGER) project will perform a fundamental experimental and numerical study to elucidate properties such as wave directionality, strain localization and failure load paths in metamaterials. Structural lattices provide the framework for the design of mechanical metamaterials with the ability to guide, steer and attenuate mechanical waves, which is relevant to applications such as vibration isolation, noise absorption, and stress wave mitigation. These properties are key to the design of novel mechanical metamaterials for wave management and impact protection. Successful achievement of the project objectives will open numerous possibilities for the characterization of a broad class of engineered materials as well as of porous, naturally occurring, or bio-inspired architected materials. The findings of the project will impact design methodologies for energy absorbing structures for body armor design, vehicle protection, and protective layers for helmets for transportation, sport and military use. Thus, the project supports fundamental investigations that will benefit research devoted to the mitigation of the effect of head injuries and concussions, or the effect of blasts. In addition, part of the project findings will be directly transferred to an educational module for an undergraduate laboratory course that will expose students to state-of-the-art mechanical characterization methodologies.The dynamic behavior of structural lattices undergoing large deformations will be investigated through novel full-field measurement techniques based on digital image correlation, along with the numerical analysis of wave properties, dynamic instabilities and collapse mechanisms. Currently available digital image correlation techniques are not suitable for the estimation of displacements and strains in structures that are highly porous, i.e. with volume of voids significantly exceeding the volume occupied by material. Furthermore, these techniques are limited in their ability to track large motion during dynamic events. The project will address these challenges through the formulation of image tracking procedures that exploit the connectivity of lattices, and of a Lagrangian framework for motion tracking that takes inspiration from particle image velocimetry used in experimental fluid dynamics. The formulation and implementation of the experimental technique will enable the study of wave motion and, most notably, of the onset of instabilities, non-uniform deformations and potentially collapse. Experimental measurements will inform and validate numerical models that will then be used to estimate directions of wave motion, strain localizations and instabilities.
这项探索性研究(急切)项目的早期概念赠款将进行基本的实验和数值研究,以阐明超材料中波浪方向,应变定位和故障负荷路径等特性。结构晶格为设计机械超材料设计的框架提供了指导,转向和衰减机械波的能力,这与诸如振动隔离,吸收噪声和压力波缓解等应用有关。这些特性是设计用于波浪管理和影响保护的新型机械超材料的关键。成功实现项目目标将为广泛的工程材料以及多孔,自然发生或以生物为灵感的架构材料的特征打开许多可能性。该项目的发现将影响设计方法,用于吸收防弹衣,车辆保护和保护层用于运输,运动和军事用途的头盔的保护层。因此,该项目支持基本调查,这些调查将使致力于缓解头部受伤和脑震荡的影响或爆炸作用的研究受益。此外,部分项目发现将直接转移到本科实验室课程的教育模块中,该模块将使学生接触到最新的机械表征方法。将通过新颖的全场测量技术以及基于数字图像相关的新型机制以及数字分析的动态分析,通过新颖的全场测量技术来调查大型变形的结构晶格的动态行为。当前可用的数字图像相关技术不适合估计高度多孔的结构中的位移和菌株,即,空隙的体积大大超过了材料所占据的体积。此外,这些技术在动态事件中跟踪大型运动的能力受到限制。该项目将通过制定图像跟踪程序来应对这些挑战,从而利用晶格的连通性,以及用于运动跟踪的拉格朗日框架,该框架从实验流体动力学中使用的粒子图像速度计汲取灵感。实验技术的配方和实施将使波动运动能够研究,最值得注意的是不稳定性的发作,不均匀的变形和潜在崩溃。实验测量将为数值模型提供信息和验证,然后将其用于估计波动,应变定位和不稳定性的方向。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optical evaluation of the wave filtering properties of graded undulated lattices
  • DOI:
    10.1063/1.5011369
  • 发表时间:
    2018-03-07
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Trainiti, G.;Rimoli, J. J.;Ruzzene, M.
  • 通讯作者:
    Ruzzene, M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Massimo Ruzzene其他文献

Generalized continuum model for the analysis of nonlinear vibrations of taut strings with microstructure
用于分析具有微结构的拉紧弦非线性振动的广义连续介质模型
Bridging scales analysis of wave propagation in heterogeneous structures with imperfections
  • DOI:
    10.1016/j.wavemoti.2007.09.007
  • 发表时间:
    2008-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Stefano Gonella;Massimo Ruzzene
  • 通讯作者:
    Massimo Ruzzene

Massimo Ruzzene的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Massimo Ruzzene', 18)}}的其他基金

Collaborative Research: Topological Dynamics of Hyperbolic and Fractal Lattices
合作研究:双曲和分形格子的拓扑动力学
  • 批准号:
    2131758
  • 财政年份:
    2021
  • 资助金额:
    $ 20.43万
  • 项目类别:
    Standard Grant
Workshop - Acoustics: New Fundamentals and Applications; Alexandria, Virginia; October 2017
研讨会 - 声学:新基础知识和应用;
  • 批准号:
    1743300
  • 财政年份:
    2017
  • 资助金额:
    $ 20.43万
  • 项目类别:
    Standard Grant
I-Corps: Wavenumber Spiral Frequency-Steerable Acoustic Transducer for Structural Health Monitoring
I-Corps:用于结构健康监测的波数螺旋频率可控声学传感器
  • 批准号:
    1736060
  • 财政年份:
    2017
  • 资助金额:
    $ 20.43万
  • 项目类别:
    Standard Grant
Nonlinear Acoustic Meta-Materials for Wave Propagation Management and Control
用于波传播管理和控制的非线性声学超材料
  • 批准号:
    0926776
  • 财政年份:
    2009
  • 资助金额:
    $ 20.43万
  • 项目类别:
    Standard Grant
Periodic Cellular Piezoelectric Sensors and Actuators for Frequency Based Wave Steering
用于基于频率的波导的周期性蜂窝压电传感器和执行器
  • 批准号:
    0800263
  • 财政年份:
    2008
  • 资助金额:
    $ 20.43万
  • 项目类别:
    Standard Grant

相似国自然基金

基于范德华异质结的宽谱微型光谱仪研究
  • 批准号:
    62334010
  • 批准年份:
    2023
  • 资助金额:
    230.00 万元
  • 项目类别:
    重点项目
面向皮米计量的光学奇点“质心法”测量机制研究
  • 批准号:
    12304330
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
曲面基底光学微结构的“5+X”架构六轴联动加工与在机测量技术研究
  • 批准号:
    52335010
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
基于光学可视化测量的深冷高压氢射流及喷射火理论模型研究
  • 批准号:
    52306255
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
干涉-质心-自准直光学共路的六自由度测量方法研究
  • 批准号:
    62375031
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Arlene George F32
阿琳·乔治 F32
  • 批准号:
    10722238
  • 财政年份:
    2024
  • 资助金额:
    $ 20.43万
  • 项目类别:
Signal Processing Along the Auditory Pathway: Changes Following Noise Exposure
沿着听觉通路的信号处理:噪声暴露后的变化
  • 批准号:
    10536262
  • 财政年份:
    2023
  • 资助金额:
    $ 20.43万
  • 项目类别:
NSF/FDA SiR: Pulse Oximetry Measurement Errors Correlated with Patient Skin Pigmentation: Optical Mechanisms and Effect Multipliers
NSF/FDA SiR:与患者皮肤色素沉着相关的脉搏血氧饱和度测量误差:光学机制和效应乘数
  • 批准号:
    2229356
  • 财政年份:
    2023
  • 资助金额:
    $ 20.43万
  • 项目类别:
    Standard Grant
Simultaneous measurement of diameters and film thickness in foam via fiber-optic interference spectral probe
通过光纤干涉光谱探头同时测量泡沫中的直径和薄膜厚度
  • 批准号:
    23K17727
  • 财政年份:
    2023
  • 资助金额:
    $ 20.43万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Lumicks C-Trap Optical Tweezers with Confocal Fluorescence Microscope
Lumicks C-Trap 光镊与共焦荧光显微镜
  • 批准号:
    10629714
  • 财政年份:
    2023
  • 资助金额:
    $ 20.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了