Collaborative Research: Topological Dynamics of Hyperbolic and Fractal Lattices

合作研究:双曲和分形格子的拓扑动力学

基本信息

  • 批准号:
    2131758
  • 负责人:
  • 金额:
    $ 27.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-11-01 至 2024-10-31
  • 项目状态:
    已结题

项目摘要

This grant will fund research that dramatically enlarges the design space for future vibration absorbing materials and structural designs, with applications to energy harvesting and acoustic panel technologies, thereby promoting the progress of science and advancing the national prosperity. The wave guiding properties of such materials depend on an underlying spatial pattern of individual oscillator elements. While the behavior associated with simple patterns that tessellate the plane using regular polygons is well understood, there is a gap in our knowledge of the ability of other classes of patterns to steer, guide, and localize waves. This project will fill this gap by discovering radically new wave-guiding physics associated with such new classes of patterns, including fractals with self-similar features at multiple scales. The experimental part of this work will uncover solutions to the problems of fabricating acoustic crystals with a desired pattern, as well as characterizing the pattern of a given crystal, opening up new research directions in materials science, acoustics, and mechanics. The project’s collaborative research ecosystem, where pure mathematics meets computational modeling and physical validation, will provide unique training opportunities for both undergraduate and graduate students, as well as for postdoctoral researchers. Outreach programs will expose middle- and high-school students and teachers to advanced topics in geometry, topology, and dynamics through dedicated and hands-on activities.This research aims to make fundamental contributions to the mathematical theory of wave-guiding metamaterials that can be characterized as hyperbolic or fractal lattices, as well as to the ability to physically realize such structures for experimental validation or design. It will achieve this outcome by formulating a theoretical framework for the classification of topological dynamics and of the possible manifestations of the bulk-boundary principle in hyperbolic and fractal lattices. The research will further demonstrate how intrinsic degrees of freedom of such lattices may be controlled to achieve new forms of wave steering, phase control, edge and bulk mode localization, and topological pumping. The experimental effort will demonstrate bioinspired packing and design solutions for large-scale fabrication of aperiodic lattices. The project will expand our knowledge about the collective dynamics of lattices, and will deliver analysis tools, mathematical models, and experimental platforms that will help chart the complex landscape of novel lattice geometries and their possible application for future material and structural designs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款将资助研究,大大扩大未来的振动吸收材料和结构设计的设计空间,并应用于能量收集和隔音板技术,从而促进科学进步,促进国家繁荣。这种材料的波导特性取决于各个振荡器元件的潜在空间图案。虽然与使用正多边形镶嵌平面的简单模式相关的行为已经很好地理解了,但我们对其他类型的模式转向,引导和定位波的能力的知识存在差距。这个项目将填补这一空白,发现与这种新类型的模式相关的全新的波导物理学,包括在多个尺度上具有自相似特征的分形。这项工作的实验部分将揭示制造具有所需图案的声学晶体的问题的解决方案,以及表征给定晶体的图案,开辟材料科学,声学和力学的新研究方向。该项目的协作研究生态系统将纯数学与计算建模和物理验证结合起来,将为本科生和研究生以及博士后研究人员提供独特的培训机会。拓展计划将通过专门的实践活动让初高中学生和教师接触几何、拓扑和动力学方面的高级主题。本研究旨在为波导超材料的数学理论做出基础性贡献,这些超材料可以被描述为双曲或分形晶格,以及物理实现这种结构的能力,以进行实验验证或设计。它将通过制定一个理论框架的分类拓扑动力学和可能的表现形式的体积边界原理在双曲和分形晶格实现这一结果。这项研究将进一步展示如何控制这种晶格的固有自由度,以实现新形式的波转向,相位控制,边缘和体模本地化,拓扑泵浦。实验工作将展示生物启发包装和非周期性晶格的大规模制造的设计解决方案。该项目将扩大我们对晶格集体动力学的了解,并将提供分析工具,数学模型,该奖项反映了NSF的法定使命,并通过利用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Massimo Ruzzene其他文献

Generalized continuum model for the analysis of nonlinear vibrations of taut strings with microstructure
用于分析具有微结构的拉紧弦非线性振动的广义连续介质模型
Dynamics of mechanical waves in periodic graphene nanoribbon assemblies
  • DOI:
    10.1186/1556-276x-6-430
  • 发表时间:
    2011-06-17
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Fabrizio Scarpa;Rajib Chowdhury;Kenneth Kam;Sondipon Adhikari;Massimo Ruzzene
  • 通讯作者:
    Massimo Ruzzene
Nonreciprocity in acoustic and elastic materials
声学和弹性材料中的非互易性
  • DOI:
    10.1038/s41578-020-0206-0
  • 发表时间:
    2020-07-06
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    Hussein Nassar;Behrooz Yousefzadeh;Romain Fleury;Massimo Ruzzene;Andrea Alù;Chiara Daraio;Andrew N. Norris;Guoliang Huang;Michael R. Haberman
  • 通讯作者:
    Michael R. Haberman
Bridging scales analysis of wave propagation in heterogeneous structures with imperfections
  • DOI:
    10.1016/j.wavemoti.2007.09.007
  • 发表时间:
    2008-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Stefano Gonella;Massimo Ruzzene
  • 通讯作者:
    Massimo Ruzzene

Massimo Ruzzene的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Massimo Ruzzene', 18)}}的其他基金

EAGER: Optical Measurement and Analysis of Dynamic Large Deformations of Mechanical Metamaterials
EAGER:机械超材料动态大变形的光学测量和分析
  • 批准号:
    1719728
  • 财政年份:
    2017
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Workshop - Acoustics: New Fundamentals and Applications; Alexandria, Virginia; October 2017
研讨会 - 声学:新基础知识和应用;
  • 批准号:
    1743300
  • 财政年份:
    2017
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
I-Corps: Wavenumber Spiral Frequency-Steerable Acoustic Transducer for Structural Health Monitoring
I-Corps:用于结构健康监测的波数螺旋频率可控声学传感器
  • 批准号:
    1736060
  • 财政年份:
    2017
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Nonlinear Acoustic Meta-Materials for Wave Propagation Management and Control
用于波传播管理和控制的非线性声学超材料
  • 批准号:
    0926776
  • 财政年份:
    2009
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Periodic Cellular Piezoelectric Sensors and Actuators for Frequency Based Wave Steering
用于基于频率的波导的周期性蜂窝压电传感器和执行器
  • 批准号:
    0800263
  • 财政年份:
    2008
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
  • 批准号:
    2327892
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
  • 批准号:
    2327893
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344490
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH-PGR: Predicting Phenotype from Molecular Profiles with Deep Learning: Topological Data Analysis to Address a Grand Challenge in the Plant Sciences
合作研究:RESEARCH-PGR:利用深度学习从分子概况预测表型:拓扑数据分析应对植物科学的重大挑战
  • 批准号:
    2310356
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Graph Analysis: Integrating Metric and Topological Perspectives
合作研究:AF:小:图分析:整合度量和拓扑视角
  • 批准号:
    2310412
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Floer Theory and Topological Entropy
合作研究:弗洛尔理论和拓扑熵
  • 批准号:
    2304207
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
  • 批准号:
    2234921
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了