New Simulation Methods for Levy Processes and Related Distributions

Levy 过程和相关分布的新模拟方法

基本信息

  • 批准号:
    1720218
  • 负责人:
  • 金额:
    $ 20.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

In the age of high power computing, random simulation, or sampling, of Levy processes and infinitely divisible distributions is key to finding numerical solutions to many complicated problems in those fields. In addition to their ubiquitous application in finance and insurance, Levy processes and infinitely divisible distributions are extremely useful in a wide range of fields of physical or social science, technology, engineering, and industry, such as turbulence, laser cooling, internet traffic, communication or server queues, equipment maintenance, health hazard monitoring, and clinical trial. The project aims to make advances in Levy processes through development of novel approaches, with emphasis on high dimensional situations. The results of the project will be integrated into course material to attract students with diverse backgrounds to research on random sampling and its applications in other fields.The lack of closed-form distribution functions is one of the most serious hurdles to the random sampling. This project proposes to build on the so-called "embed-and-extract" approach developed by the PI to exact sampling of the first exit event of a large class of univariate Levy processes and a so-called "Poisson-gamma-normal" approximation for approximate sampling of univariate infinitely divisible distributions. Based on these preliminary findings, the goal of the project is twofold. The first goal is to develop new random sampling methods for the multivariate processes. Second, the project will develop refined or new ideas and methods to sample for the univariate processes. To achieve the goal, the project will investigate the issue of random sampling from two aspects. First, exact sampling methods will be developed for the first passage event or first exit event of a Levy process. These random events play an important role in applications as well as in theory, but at present, the knowledge on their exact sampling is very limited, especially for multivariate processes. Second, high-precision approximate sampling methods will be developed for infinitely divisible random variables as well as Levy processes, with the emphasis on easy implementation.
在高功率计算时代,Levy 过程和无限可分分布的随机模拟或采样是找到这些领域中许多复杂问题数值解决方案的关键。除了在金融和保险领域的普遍应用之外,Levy 过程和无限可分分布在物理或社会科学、技术、工程和工业的广泛领域中也非常有用,例如湍流、激光冷却、互联网流量、通信或服务器队列、设备维护、健康危害监测和临床试验。 该项目旨在通过开发新方法来推动 Levy 过程取得进展,重点关注高维情况。该项目的成果将被纳入课程材料中,以吸引不同背景的学生研究随机抽样及其在其他领域的应用。封闭式分布函数的缺乏是随机抽样最严重的障碍之一。 该项目建议建立在 PI 开发的所谓“嵌入和提取”方法的基础上,对一大类单变量 Levy 过程的第一个退出事件进行精确采样,并使用所谓的“泊松伽玛正态”近似对单变量无限可分分布进行近似采样。 根据这些初步发现,该项目的目标是双重的。第一个目标是为多元过程开发新的随机抽样方法。 其次,该项目将开发改进的或新的想法和方法来对单变量过程进行采样。 为了实现这一目标,该项目将从两个方面研究随机抽样问题。 首先,将为 Levy 过程的第一次通过事件或第一次退出事件开发精确的采样方法。 这些随机事件在应用和理论上都发挥着重要作用,但目前,对其精确采样的了解非常有限,特别是对于多变量过程。 其次,针对无限可分随机变量和Levy过程开发高精度近似采样方法,重点是易于实现。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Law of the First Passage Triple of a Spectrally Positive Strictly Stable Process
谱正严格稳定过程的第一通道三重定律
Law of two-sided exit by a spectrally positive strictly stable process
谱正严格稳定过程的双边退出定律
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhiyi Chi其他文献

On exact sampling of the first passage event of a Lévy process with infinite Lévy measure and bounded variation
具有无限 Lévy 测度和有界变分的 Lévy 过程的首次通过事件的精确采样
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiyi Chi
  • 通讯作者:
    Zhiyi Chi
Statistical Properties of Probabilistic Context-Free Grammars
  • DOI:
  • 发表时间:
    1999-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiyi Chi
  • 通讯作者:
    Zhiyi Chi
On ` 1-regularized estimation for nonlinear models that have sparse underlying linear structures
关于具有稀疏底层线性结构的非线性模型的 1-正则化估计
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiyi Chi
  • 通讯作者:
    Zhiyi Chi
Exact sampling of first passage event of certain symmetric Levy processes with unbounded variation
具有无限变化的某些对称 Levy 过程的首次通过事件的精确采样
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiyi Chi
  • 通讯作者:
    Zhiyi Chi
Random reversible Markov matrices with tunable extremal eigenvalues
具有可调极值特征值的随机可逆马尔可夫矩阵
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiyi Chi
  • 通讯作者:
    Zhiyi Chi

Zhiyi Chi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhiyi Chi', 18)}}的其他基金

Controlling Positive False Discovery Rate with Power
用力量控制阳性错误发现率
  • 批准号:
    0706048
  • 财政年份:
    2007
  • 资助金额:
    $ 20.13万
  • 项目类别:
    Standard Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
  • 批准号:
    0723557
  • 财政年份:
    2007
  • 资助金额:
    $ 20.13万
  • 项目类别:
    Standard Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

New Optimisation Methods for Scale-Resolving Turbulent Flow Simulation
尺度解析湍流模拟的新优化方法
  • 批准号:
    2898644
  • 财政年份:
    2020
  • 资助金额:
    $ 20.13万
  • 项目类别:
    Studentship
New Methods for Large-scale Computer Simulation
大规模计算机模拟的新方法
  • 批准号:
    9898413
  • 财政年份:
    2018
  • 资助金额:
    $ 20.13万
  • 项目类别:
New Methods for Large-scale Computer Simulation
大规模计算机模拟的新方法
  • 批准号:
    9497390
  • 财政年份:
    2018
  • 资助金额:
    $ 20.13万
  • 项目类别:
SI2-SSE: Infrastructure Enabling Broad Adoption of New Methods That Yield Orders-of-Magnitude Speedup of Molecular Simulation Averaging
SI2-SSE:基础设施支持广泛采用新方法,使分子模拟平均速度提高几个数量级
  • 批准号:
    1739145
  • 财政年份:
    2017
  • 资助金额:
    $ 20.13万
  • 项目类别:
    Standard Grant
Extreme rainfall forecasting: new statistical simulation and Big Data methods for making sense of rainfall radar and rain gauges
极端降雨预报:新的统计模拟和大数据方法,用于理解降雨雷达和雨量计
  • 批准号:
    2220795
  • 财政年份:
    2017
  • 资助金额:
    $ 20.13万
  • 项目类别:
    Studentship
Development of real-scale simulation methods for nanostructure conductors and creation of new functions
开发纳米结构导体的真实尺度模拟方法并创建新功能
  • 批准号:
    15K04619
  • 财政年份:
    2015
  • 资助金额:
    $ 20.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New Simulation Methods for Accelerated Mixed-Signal Simulation
加速混合信号仿真的新仿真方法
  • 批准号:
    247945085
  • 财政年份:
    2013
  • 资助金额:
    $ 20.13万
  • 项目类别:
    Research Grants
New Methods of Fault Simulation and Location for Smart Grids Based on Synchronized Measurements
基于同步测量的智能电网故障模拟与定位新方法
  • 批准号:
    1128383
  • 财政年份:
    2012
  • 资助金额:
    $ 20.13万
  • 项目类别:
    Standard Grant
Developing new visual analysis methods to be integrated into simulation processes, focusing on the exploration of cell biological systems in space and time
开发新的视觉分析方法以集成到模​​拟过程中,重点探索细胞生物系统的空间和时间
  • 批准号:
    202784448
  • 财政年份:
    2011
  • 资助金额:
    $ 20.13万
  • 项目类别:
    Priority Programmes
Development of new molecular dynamics simulation methods and application to protein folding problem
新分子动力学模拟方法的发展及其在蛋白质折叠问题中的应用
  • 批准号:
    23740325
  • 财政年份:
    2011
  • 资助金额:
    $ 20.13万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了