OP: Variational Principles, Minimization Diagrams, and Mixed Finite Elements in Computational Geometric Optics

OP:计算几何光学中的变分原理、最小化图和混合有限元

基本信息

  • 批准号:
    1720276
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

In many devices, including projection displays, laser weapons, and medical illuminators, it is required to accurately control light. The fundamental question to be addressed by this research project in computational geometric optics is the efficient design of lenses and mirrors through provably convergent numerical methods. The goal of the project is to develop improved efficient and theoretically sound algorithms for a variety of illumination problems. The project involves training of graduate students through involvement in the research.Available tools for the design of refractors and reflectors are limited, and some are not backed up by a sound theory. Promising approaches consist in solving numerically the associated nonlinear partial differential equations of Monge-Ampere type and variational methods that solve the illumination problem as an equation in measures. Existing methods based on partial differential equations make ad hoc assumptions and do not address appropriately the unusual boundary conditions for these problems. On the other hand, most existing variational methods scale poorly with the size of the problem. This has created a need for improved efficient and robust numerical methods based on rigorous analysis to solve computational geometric optics problems. This project aims to: (1) implement and analyze an efficient variational method, based on minimization diagrams, for computing solutions of a variety of illumination problems; (2) address the numerical resolution of the relevant partial differential equations with a provably convergent and efficient finite-difference method; and (3) solve the relevant nonlinear equations with mixed finite elements based on approximations by smooth functions. The project will also investigate the convergence properties of the different approaches. It is anticipated that the results of the project will identify which approach is the most efficient.
在许多设备中,包括投影显示器、激光武器和医疗照明器,都需要精确控制光线。 这个计算几何光学研究项目要解决的基本问题是通过可证明收敛的数值方法有效地设计透镜和反射镜。该项目的目标是为各种照明问题开发改进的高效和理论上合理的算法。该项目涉及通过参与研究来培训研究生。用于折射器和反射器设计的可用工具有限,有些没有可靠的理论支持。有前途的方法包括数值求解相关的非线性偏微分方程的Monge-安培型和变分方法,解决照明问题作为一个方程的措施。现有的方法基于偏微分方程作出特设的假设,并没有适当地解决这些问题的不寻常的边界条件。另一方面,大多数现有的变分方法的规模与问题的大小差。这就产生了一个需要改进的高效和强大的数值方法的基础上严格的分析,以解决计算几何光学问题。该项目旨在:(1)实现和分析基于最小化图的高效变分方法,用于计算各种照明问题的解;(2)用可证明收敛且高效的有限差分方法解决相关偏微分方程的数值解;以及(3)基于平滑函数的近似,用混合有限元求解相关非线性方程。该项目还将研究不同方法的收敛特性。预计该项目的结果将确定哪种方法最有效。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Two-Grid Method for the C0 Interior Penalty Discretization of the Monge-Ampère Equation
蒙日-安培方程C0内罚离散化的二网格法
Computational Nonimaging Geometric Optics: Monge-Ampère
计算非成像几何光学:Monge-Ampère
On weak convergence of Monge-Ampere measures for discrete convex mesh functions
离散凸网格函数Monge-Ampere测度的弱收敛性
Iterative methods for $k$-Hessian equations
$k$-Hessian 方程的迭代方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gerard Awanou其他文献

Shortfall risk minimization in a discrete regime switching model
Smooth approximations of the Aleksandrov solution of the Monge-Ampère equation
Monge-Ampère 方程 Aleksandrov 解的平滑逼近
A rotated nonconforming rectangular mixed element for elasticity
  • DOI:
    10.1007/s10092-009-0159-6
  • 发表时间:
    2009-03
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Gerard Awanou
  • 通讯作者:
    Gerard Awanou
Pseudo transient continuation and time marching methods for Monge-Ampère type equations
Quadratic mixed finite element approximations of the Monge–Ampère equation in 2D
二维 Monge-Ampère 方程的二次混合有限元近似
  • DOI:
    10.1007/s10092-014-0127-7
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Gerard Awanou
  • 通讯作者:
    Gerard Awanou

Gerard Awanou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gerard Awanou', 18)}}的其他基金

Mixed Finite Elements, Monge-Ampere equation and Optimal Transportation
混合有限元、Monge-Ampere方程和最优运输
  • 批准号:
    1319640
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Mixed finite elements and smooth approximations for partial differential equations
偏微分方程的混合有限元和平滑近似
  • 批准号:
    0811052
  • 财政年份:
    2008
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似海外基金

Variational principles for continuum dynamics on geometric rough paths.
几何粗糙路径上连续介质动力学的变分原理。
  • 批准号:
    2478288
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Variational principles and their applications in modern analysis
变分原理及其在现代分析中的应用
  • 批准号:
    435947-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Variational principles and their applications in modern analysis
变分原理及其在现代分析中的应用
  • 批准号:
    435947-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Variational principles and their applications in modern analysis
变分原理及其在现代分析中的应用
  • 批准号:
    435947-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Variational principles for stochastic parameterisations in geophysical fluid dynamics
地球物理流体动力学中随机参数化的变分原理
  • 批准号:
    EP/N023781/1
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Variational principles and their applications in modern analysis
变分原理及其在现代分析中的应用
  • 批准号:
    435947-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Balanced approximation spaces and mixed variational principles to eliminate locking effects in isogeometric shell analysis
平衡逼近空间和混合变分原理消除等几何壳分析中的锁定效应
  • 批准号:
    266714483
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grants
Variational principles and their applications in modern analysis
变分原理及其在现代分析中的应用
  • 批准号:
    435947-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Explore of undiscovered variational principles in function spaces in real analysis
实分析中函数空间中未发现的变分原理的探索
  • 批准号:
    26610030
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Variational principles and their applications in modern analysis
变分原理及其在现代分析中的应用
  • 批准号:
    435947-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了