Mixed Finite Elements, Monge-Ampere equation and Optimal Transportation

混合有限元、Monge-Ampere方程和最优运输

基本信息

  • 批准号:
    1319640
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

The goal of the proposal is to study efficient mixed finite element methods for the computation of transport maps in optimal transportation problems. The focus is on problems in which the cost of transport is a quadratic function of the distance. They lead to Monge-Ampere equations. The first part of the project consists in clarifying the applicability of finite element type methods to weak solutions of the equation. The key approach here is approximation by smooth functions. In the second part, techniques of mixed finite element analysis are adapted to the approximation of smooth solutions of the equation.Optimal transportation has a growing application in various fields ranging from theoretical ones such as geometry and analysis to applied fields such as biology, pattern recognition, image processing, fluid mechanics, geophysics, meteorology, optics, oceanography and cosmology. This has created the critical need for efficient and robust numerical methods backed up theoretically to solve optimal transportation problems. The efficient and reliable methods developed from this project could be used to solve optimal transportation problems which appear in many other applications e.g. weather forecasting, traffic congestion, economics, mesh equidistribution, texture mapping, etc. The proposal studies the Monge-Ampere equation of optimal transportation with the goal of clarifying theoretically the use of the efficient mixed finite element methods. It advances knowledge towards the resolution of some open problems in analysis and geometry involving Monge-Ampere type equations.
该提案的目标是研究有效的混合有限元方法计算的运输地图在最佳运输问题。重点是运输成本是距离的二次函数的问题。它们导致了Monge-Ampere方程。该项目的第一部分包括在澄清有限元类型的方法弱解方程的适用性。这里的关键方法是光滑函数的近似。在第二部分中,混合有限元分析技术被用来逼近方程的光滑解,最优运输在各个领域有越来越多的应用,从理论的,如几何和分析,应用领域,如生物学,模式识别,图像处理,流体力学,物理学,气象学,光学,海洋学和宇宙学。这就迫切需要有理论支持的高效、稳健的数值方法来解决最优运输问题。从这个项目开发的有效和可靠的方法可以用来解决最优运输问题,出现在许多其他应用,如天气预报,交通拥堵,经济,网格均匀分布,纹理映射等建议研究的蒙格-安培方程的最优运输的目标是澄清理论上使用的高效混合有限元方法。它推进知识对解决一些开放的问题,在分析和几何涉及蒙日安培型方程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gerard Awanou其他文献

Shortfall risk minimization in a discrete regime switching model
Smooth approximations of the Aleksandrov solution of the Monge-Ampère equation
Monge-Ampère 方程 Aleksandrov 解的平滑逼近
A rotated nonconforming rectangular mixed element for elasticity
  • DOI:
    10.1007/s10092-009-0159-6
  • 发表时间:
    2009-03
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Gerard Awanou
  • 通讯作者:
    Gerard Awanou
Pseudo transient continuation and time marching methods for Monge-Ampère type equations
Quadratic mixed finite element approximations of the Monge–Ampère equation in 2D
二维 Monge-Ampère 方程的二次混合有限元近似
  • DOI:
    10.1007/s10092-014-0127-7
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Gerard Awanou
  • 通讯作者:
    Gerard Awanou

Gerard Awanou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gerard Awanou', 18)}}的其他基金

OP: Variational Principles, Minimization Diagrams, and Mixed Finite Elements in Computational Geometric Optics
OP:计算几何光学中的变分原理、最小化图和混合有限元
  • 批准号:
    1720276
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Mixed finite elements and smooth approximations for partial differential equations
偏微分方程的混合有限元和平滑近似
  • 批准号:
    0811052
  • 财政年份:
    2008
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Finite elements beyond the de Rham complex
de Rham 复形之外的有限元
  • 批准号:
    2747354
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
Coupling Particle In Cell with High-Order Finite Elements and Uncertainty Quantification.
细胞内粒子与高阶有限元和不确定性量化的耦合。
  • 批准号:
    2752158
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
Collaborative Research: Elements: EXHUME: Extraction for High-Order Unfitted Finite Element Methods
合作研究:Elements:EXHUME:高阶未拟合有限元方法的提取
  • 批准号:
    2103939
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Direct Finite Elements on Convex Polygons and Polyhedra
凸多边形和多面体上的直接有限元
  • 批准号:
    2111159
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: EXHUME: Extraction for High-Order Unfitted Finite Element Methods
合作研究:Elements:EXHUME:高阶未拟合有限元方法的提取
  • 批准号:
    2104106
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Continuous space-time multi-level hp Galerkin-Petrov finite elements for the direct numerical simulation of laser power bed fusion processes
用于激光功率床聚变过程直接数值模拟的连续时空多级 HP Galerkin-Petrov 有限元
  • 批准号:
    441506233
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grants
Structure-Preserving Discretizations: Finite Elements, Splines, and Isogeometric Analysis
结构保持离散化:有限元、样条曲线和等几何分析
  • 批准号:
    1914795
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Application of interior penalty methods to mixed finite element method using nonconforming elements
内罚法在非协调单元混合有限元法中的应用
  • 批准号:
    19K03630
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Robust and Adaptable 3D Shell-Type Finite Elements for Modelling Thin Biomechanical Structures
用于薄生物力学结构建模的稳健且适应性强的 3D 壳型有限元
  • 批准号:
    529158-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Applications of Moving Mesh Finite Elements to Population Dynamics
移动网格有限元在群体动力学中的应用
  • 批准号:
    2112774
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了