RUI: Algorithms and Modeling for Chemotactic Deformable Particles in Non-Newtonian, Multiphase, Non-Isothermal, Turbulent Flows

RUI:非牛顿、多相、非等温、湍流中趋化可变形粒子的算法和建模

基本信息

  • 批准号:
    1720323
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

This project concerns computational fluid dynamics in the field of fluid-structure interactions. The goal of the research is to develop a new multi-scale computationally-efficient and robust numerical model to simulate particles that move in response to chemical stimuli in their environment. The work aims to create new understanding of the hydrodynamic interactions of such particles with the bulk fluid, which differs from particle-fluid hydrodynamics for non-chemotactic particles, whose motility is driven solely by the bulk fluid flow. The project will recruit a diverse group of talented undergraduate students and encourage them to pursue graduate studies, focusing on challenging research problems in a well-established interdisciplinary environment. The project will introduce students to the intellectual excitement of computational and mathematical research in fluid dynamics, thereby encouraging them to think creatively and independently about potential applications and increasing their awareness of pathways to graduate schools and opportunities in research and development in industry employment.This project explores a new multi-scale computationally-efficient and robust numerical model to simulate two- and three-dimensional motility of deformable chemotactic particles in complex fluids. This addresses two fundamental issues that arise in the mathematical and computational treatment of particle motility in fluids: (i) self-autonomous motion of deformable chemotactic particles in response to spatially- and temporally-varying chemoattractant gradients, and (ii) particle-fluid hydrodynamics in non-Newtonian fluids and multiphase flows in laminar to turbulent flow regimes. The multi-scale model couples intracellular signaling pathways with particle-fluid interactions using the RapidCell model, the method of Regularized Stokeslets, and the Immersed Boundary method. This is well-suited for sophisticated applications, including, for example, bacterial chemotaxis promoting biofilm formation and swarm robotic odor localization. The project includes development of a novel, multi-scale computational fluid dynamics package suitable for theoretical analyses and diverse multi-disciplinary applications. It will serve as a highly informative teaching tool for graduate and undergraduate level classes.
本项目涉及流固相互作用领域的计算流体动力学。该研究的目标是开发一种新的多尺度计算效率高且鲁棒的数值模型来模拟粒子在其环境中对化学刺激的反应。这项工作旨在对此类颗粒与散装流体的流体动力学相互作用产生新的认识,这与非趋化颗粒的颗粒-流体流体动力学不同,后者的运动完全由散装流体流动驱动。该项目将招收不同种类的有才华的本科生,并鼓励他们继续研究生学习,在一个完善的跨学科环境中专注于具有挑战性的研究问题。该项目将向学生介绍流体动力学中计算和数学研究的智力兴奋,从而鼓励他们创造性地和独立地思考潜在的应用,并提高他们对研究生院途径和工业就业研究和发展机会的认识。本项目探索了一种新的多尺度计算效率高且鲁棒的数值模型来模拟复杂流体中可变形趋化颗粒的二维和三维运动。这解决了在流体中粒子运动的数学和计算处理中出现的两个基本问题:(i)响应空间和时间变化的化学引诱梯度的可变形趋化粒子的自主运动,以及(ii)非牛顿流体中的粒子流体动力学和层流到湍流状态下的多相流。该多尺度模型采用RapidCell模型、正则化Stokeslets方法和浸入边界方法将细胞内信号通路与颗粒-流体相互作用耦合在一起。这非常适合复杂的应用,包括,例如,促进生物膜形成的细菌趋化性和蜂群机器人气味定位。该项目包括开发一种新颖的多尺度计算流体动力学软件包,适用于理论分析和各种多学科应用。它将成为研究生和本科水平课程的一个信息丰富的教学工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hoa Nguyen其他文献

Surviving and thriving: voices from teachers in remote and disadvantaged regions of Vietnam
生存与繁荣:越南偏远贫困地区教师的心声
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Hoa Nguyen;Ngoc A. Bui;Nga T.H. Ngo;Trang Q. Luong
  • 通讯作者:
    Trang Q. Luong
Impact of Pharmacist Intervention in Response to Automated Molecular Diagnostic Tests of Blood Culture Results
药剂师干预对血培养结果自动分子诊断测试的影响
  • DOI:
    10.1177/0897190020943369
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Lauren McCarthy;P. Colley;Hoa Nguyen;M. Berhe
  • 通讯作者:
    M. Berhe
Coupled RapidCell and lattice Boltzmann models to simulate hydrodynamics of bacterial transport in response to chemoattractant gradients in confined domains
  • DOI:
    10.1007/s10404-015-1701-2
  • 发表时间:
    2016-02-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Hoa Nguyen;Basagaoglu, Hakan;Healy, Frank
  • 通讯作者:
    Healy, Frank
Analysis of Wood Bonding Failures that Initiated Before Adhesive Solidification: Air Fingers and Cavitation
A probabilistic relational database model and algebra

Hoa Nguyen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hoa Nguyen', 18)}}的其他基金

Collaborative Research: DMS/NIGMS2: Computational and Experimental Analysis of Choanoflagellate Hydrodynamic Performance - Selective Factors in the Evolution of Multicellularity
合作研究:DMS/NIGMS2:领鞭毛虫水动力性能的计算和实验分析 - 多细胞进化中的选择因素
  • 批准号:
    2054259
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
  • 批准号:
    2236926
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Randomized Feature Methods for Modeling and Dynamics: Theory and Algorithms
协作研究:建模和动力学的随机特征方法:理论和算法
  • 批准号:
    2331033
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomized Feature Methods for Modeling and Dynamics: Theory and Algorithms
协作研究:建模和动力学的随机特征方法:理论和算法
  • 批准号:
    2208339
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Learning Algorithms for Predictive Modeling in Biomedical Computing: Methods and Applications
生物医学计算中预测建模的学习算法:方法与应用
  • 批准号:
    RGPIN-2020-07117
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
NeTS: Small: Hybrid Switching in Data Center Networks: Systems-driven Modeling and Principled Algorithms
NetS:小型:数据中心网络中的混合交换:系统驱动的建模和原理算法
  • 批准号:
    2309187
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Modeling and Solution Algorithms for Process and Operations Planning with Applications in Manufacturing and Related Sectors
流程和运营规划的建模和解决算法及其在制造和相关领域的应用
  • 批准号:
    RGPIN-2021-02983
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Randomized Feature Methods for Modeling and Dynamics: Theory and Algorithms
协作研究:建模和动力学的随机特征方法:理论和算法
  • 批准号:
    2208340
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Learning Algorithms for Predictive Modeling in Biomedical Computing: Methods and Applications
生物医学计算中预测建模的学习算法:方法与应用
  • 批准号:
    RGPIN-2020-07117
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling, Signal Processing and the Design of Novel Instruments and Algorithms Applicable to the Respiratory System
适用于呼吸系统的建模、信号处理以及新型仪器和算法的设计
  • 批准号:
    RGPIN-2017-05484
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and Solution Algorithms for Process and Operations Planning with Applications in Manufacturing and Related Sectors
流程和运营规划的建模和解决算法及其在制造和相关领域的应用
  • 批准号:
    RGPIN-2021-02983
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了