Learning Algorithms for Predictive Modeling in Biomedical Computing: Methods and Applications
生物医学计算中预测建模的学习算法:方法与应用
基本信息
- 批准号:RGPIN-2020-07117
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computer Aided Interventions (CAI) refer to systems that incorporate information from a multitude of biosensors, with computational algorithms to assist in decision making. CAI systems are a cornerstone of modern medicine and have played a significant role for the past few decades in areas such as radiology and robotic surgery. The vast amount of data generated from various biosensors and tools (e.g. imaging modalities) for CAI are complemented by unprecedented advances in computational approaches in particular machine learning for analysis of data. Understanding biomedical data has therefore been impacted fundamentally, mostly in a positive manner, with this trend expected to grow. However, in practice, the abundance of machine learning solutions stands in stark contrast to their uptake in decision making with practical impact. Of the significant challenges for realizing this are the noisy and highly heterogenous nature of the data from various modalities and populations, and the limited availability and inaccurate nature of annotations. The overarching goal of this proposal is to design the next generation of learning algorithms and critical decision-making approaches for actionable, optimized CAI that address the challenges to the uptake of the developed techniques in this domain. I propose innovative methods that: i) disentangle informative task-specific attributes of data from modality-specific attributes. Task-specific attributes can then be used to ensure knowledge learned from one domain of data (e.g. imaging modality such as raw US) is transferable to other domains (e.g. B-mode US). To fuse multiple modalities of data, flexible and efficient deep learning-based approaches that eliminate optimization during registration and provide uncertainty estimates are devised; ii) involve discriminative and generative approaches to learn from data with imprecise annotations through unsupervised discovery of associations between data points, and decision making using such associations in the context of limited available gold-standard annotations; iii) provide decision support for tissue classification using simultaneous theory-guided and data-driven learning. Theory-based, simulated data allow convergence to a solution and experimental data help minimize the residual error from the previous step, through unsupervised adversarial methods. The proposed research program will provide training for 3 PhD, 3 MSc and 5UG HQP. State of the art interdisciplinary training environment for HQP that follows the principals of Equity, Diversity and Inclusion will be provided. Trainees will acquire a wide spectrum of skills including image processing, machine learning, decision making and software development. They will learn to translate their knowledge of computing to high impact problems with practical implications. Their training will be of considerable value to a growing demand in both public and private sectors in machine learning and biomedicine.
计算机辅助干预(CAI)是指整合来自大量生物传感器的信息并使用计算算法来辅助决策的系统。CAI系统是现代医学的基石,在过去的几十年里在放射学和机器人手术等领域发挥了重要作用。从各种生物传感器和工具(例如成像模式)生成的大量CAI数据得到了计算方法(特别是用于数据分析的机器学习)前所未有的进步的补充。因此,对生物医学数据的理解受到了根本性的影响,主要是以积极的方式,预计这一趋势将继续增长。然而,在实践中,丰富的机器学习解决方案与它们在决策中的应用形成了鲜明的对比。实现这一点的重大挑战是来自各种模式和人群的数据的噪声和高度异质性,以及注释的有限可用性和不准确性。 该提案的总体目标是设计下一代学习算法和关键决策方法,用于可操作的优化CAI,以应对该领域开发技术的挑战。我提出了创新的方法,即:i)从特定于模态的属性中分离出数据的特定于任务的信息属性。然后,可以使用特定于任务的属性来确保从一个数据域(例如,成像模态,诸如原始US)学习的知识可以转移到其他域(例如,B模式US)。为了融合数据的多种形式,设计了灵活有效的基于深度学习的方法,该方法消除了配准期间的优化并提供不确定性估计; ii)涉及通过数据点之间的关联的无监督发现从具有不精确注释的数据中学习的判别和生成方法,以及在有限的可用黄金标准注释的背景下使用这种关联进行决策; iii)使用同时的理论引导和数据驱动的学习为组织分类提供决策支持。基于理论的模拟数据可以收敛到解决方案,而实验数据有助于通过无监督对抗方法最大限度地减少上一步的残余误差。拟议的研究计划将提供培训3博士,3硕士和5 UG HQP。将为HQP提供最先进的跨学科培训环境,遵循公平,多样性和包容性的原则。学员将获得广泛的技能,包括图像处理,机器学习,决策和软件开发。他们将学习将他们的计算知识转化为具有实际意义的高影响力问题。他们的培训将对公共和私营部门在机器学习和生物医学方面日益增长的需求具有相当大的价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mousavi, Parvin其他文献
SimITK: Visual Programming of the ITK Image-Processing Library within Simulink
- DOI:
10.1007/s10278-013-9667-7 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:4.4
- 作者:
Dickinson, Andrew W. L.;Abolmaesumi, Purang;Mousavi, Parvin - 通讯作者:
Mousavi, Parvin
A deep learning approach for real time prostate segmentation in freehand ultrasound guided biopsy
- DOI:
10.1016/j.media.2018.05.010 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:10.9
- 作者:
Abu Anas, Emran Mohammad;Mousavi, Parvin;Abolmaesumi, Purang - 通讯作者:
Abolmaesumi, Purang
Tissue Classification Using Ultrasound-Induced Variations in Acoustic Backscattering Features
- DOI:
10.1109/tbme.2012.2224111 - 发表时间:
2013-02-01 - 期刊:
- 影响因子:4.6
- 作者:
Daoud, Mohammad I.;Mousavi, Parvin;Abolmaesumi, Purang - 通讯作者:
Abolmaesumi, Purang
Biomechanically constrained groupwise ultrasound to CT registration of the lumbar spine
- DOI:
10.1016/j.media.2010.07.008 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:10.9
- 作者:
Gill, Sean;Abolmaesumi, Purang;Mousavi, Parvin - 通讯作者:
Mousavi, Parvin
Augmenting Detection of Prostate Cancer in Transrectal Ultrasound Images Using SVM and RF Time Series
- DOI:
10.1109/tbme.2008.2009766 - 发表时间:
2009-09-01 - 期刊:
- 影响因子:4.6
- 作者:
Moradi, Mehdi;Abolmaesumi, Purang;Mousavi, Parvin - 通讯作者:
Mousavi, Parvin
Mousavi, Parvin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mousavi, Parvin', 18)}}的其他基金
Learning Algorithms for Predictive Modeling in Biomedical Computing: Methods and Applications
生物医学计算中预测建模的学习算法:方法与应用
- 批准号:
RGPIN-2020-07117 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
CREATE Training Program in Medical Informatics: Preparing Canada's Workforce for Health Data of Tomorrow
创建医疗信息学培训计划:让加拿大劳动力为明天的健康数据做好准备
- 批准号:
555366-2021 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Research and Training Experience
An integrated spectroscopy-ultrasound surgical navigation system for residual cancer detection in breast surgery.
用于乳腺手术中残留癌症检测的集成光谱超声手术导航系统。
- 批准号:
538824-2019 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Health Research Projects
Learning Algorithms for Predictive Modeling in Biomedical Computing: Methods and Applications
生物医学计算中预测建模的学习算法:方法与应用
- 批准号:
RGPIN-2020-07117 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
An integrated spectroscopy-ultrasound surgical navigation system for residual cancer detection in breast surgery.
用于乳腺手术中残留癌症检测的集成光谱超声手术导航系统。
- 批准号:
538824-2019 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Health Research Projects
Towards Integrative Data Analysis for Predictive Modeling in Biomedical Computing
生物医学计算中预测建模的综合数据分析
- 批准号:
RGPIN-2015-06051 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Towards Integrative Data Analysis for Predictive Modeling in Biomedical Computing
生物医学计算中预测建模的综合数据分析
- 批准号:
RGPIN-2015-06051 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
A system for multi-parametric real-time analysis of tissue properties
组织特性多参数实时分析系统
- 批准号:
RTI-2018-00887 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Research Tools and Instruments
Towards Integrative Data Analysis for Predictive Modeling in Biomedical Computing
生物医学计算中预测建模的综合数据分析
- 批准号:
RGPIN-2015-06051 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
RF Time Series Flashlight for Targeted Prostate Biopsy
用于靶向前列腺活检的射频时间序列手电筒
- 批准号:
462493-2014 - 财政年份:2016
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Health Research Projects
相似海外基金
I-Corps: Predictive algorithms to determine individual feed intake in beef cattle.
I-Corps:确定肉牛个体采食量的预测算法。
- 批准号:
2348526 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
2400511 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Building predictive algorithms to identify resilience and resistance to Alzheimer's disease
构建预测算法来识别对阿尔茨海默病的恢复力和抵抗力
- 批准号:
10659007 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
RII Track-4 NSF: Robust, Predictive, and Learning Guidance Algorithms for On-Orbit Servicing and Assembly Using Multiple Space Systems
RII Track-4 NSF:使用多个空间系统进行在轨维修和组装的稳健、预测和学习制导算法
- 批准号:
2229756 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
- 批准号:
10677539 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
- 批准号:
10368562 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Learning Algorithms for Predictive Modeling in Biomedical Computing: Methods and Applications
生物医学计算中预测建模的学习算法:方法与应用
- 批准号:
RGPIN-2020-07117 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
SBIR Phase II: Real-time predictive battery pack diagnostics and algorithms
SBIR 第二阶段:实时预测电池组诊断和算法
- 批准号:
2026198 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Cooperative Agreement
CRII: III: Learning Predictive Models with Structured Sparsity: Algorithms and Computations
CRII:III:学习具有结构化稀疏性的预测模型:算法和计算
- 批准号:
1948341 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Learning Algorithms for Predictive Modeling in Biomedical Computing: Methods and Applications
生物医学计算中预测建模的学习算法:方法与应用
- 批准号:
RGPIN-2020-07117 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual