STTR Phase I: Additive Manufacturing of Radio Frequency and Microwave Components from a Highly Conductive 3D Printing Filament

STTR 第一阶段:使用高导电 3D 打印丝材增材制造射频和微波组件

基本信息

  • 批准号:
    1721644
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

This STTR Phase I project will enable the rapid prototyping and manufacturing of radio frequency (RF) components with 3D printing, and thereby reduce component cost, weight, and turnaround time. The global RF components market is expected to reach $17.54 billion by 2022, but fabrication techniques for commercial RF components have seen little innovation. Conventional RF manufacturing techniques, such machining and photolithography, are accurate and reliable, but they are also expensive, time-consuming and produce unnecessary waste. 3D printing enables fast and accurate manufacturing of custom components, as well as the creation of extremely complex geometries at low-cost for improved component performance. 3D printing can also enable users to design components to fit the design space available, removing the necessity of designing technology around commercially available parts, a critical feature in space and weight-sensitive aerospace applications. However, the materials available to 3D printing are mostly limited to non-conducting polymers. By creating a highly conductive 3D printing material, and testing the properties of RF components made with this filament, this project will make it possible to rapidly prototype and produce custom RF components, thereby accelerating research and improving the competitiveness of RF component manufacturing in the U.S.This STTR proposal will create a highly conductive (2×10^5 S m-1) polymer filament that can be used with low-cost fused deposition modeling 3D printers to create a variety of high-value RF components. The filament will be engineered to print reliably, and retain its conductivity and mechanical integrity to temperatures of ~150 °C. To achieve these goals, the proposed work will determine the relationship between conductivity, the loading of conductive filler, the shape of the conductive filler, the filament mechanical properties, and the viscosity of the filament at printing temperatures. New methods will be developed to prevent oxidation of the conductive filler at elevated temperatures. A novel conductive filler will be developed to achieve these performance specifications at low cost. Concurrent with these material development efforts, novel RF components will be designed, simulated, and printed in order to build a comprehensive database with detailed designs and printing parameters for producing the RF components with a low failure rate. By the end of this project, users will be able to design, predict, and reliably print RF components with conductive filament on low-cost 3D printers.
STTRI期项目将实现3D打印射频(RF)组件的快速成型和制造,从而降低组件成本、重量和周转时间。到2022年,全球射频组件市场预计将达到175.4亿美元,但商业射频组件的制造技术几乎没有创新。传统的射频制造技术,如机械加工和光刻技术,是准确和可靠的,但它们也昂贵、耗时并产生不必要的浪费。3D打印能够快速、准确地制造定制组件,以及以低成本创建极其复杂的几何图形,从而提高组件性能。3D打印还可以让用户设计适合现有设计空间的部件,消除了围绕商业部件设计技术的必要性,这是空间和对重量敏感的航空航天应用的关键功能。然而,可用于3D打印的材料大多限于非导电聚合物。通过创造一种高导电性的3D打印材料,并测试用该长丝制成的射频组件的性能,该项目将使快速制作定制的射频组件原型成为可能,从而加快研究并提高美国射频组件制造的竞争力。该STTR计划将创造一种高导电性(2×10^5 S m-1)的聚合物长丝,可以与低成本的熔融沉积成型3D打印机一起使用,以制造各种高价值的射频组件。长丝将被设计成可靠地打印,并在~150°C的温度下保持其导电性和机械完整性。为了实现这些目标,拟议的工作将确定导电性、导电填料的负载、导电填料的形状、长丝的机械性能和长丝在打印温度下的粘度之间的关系。将开发新的方法来防止导电填料在高温下氧化。为了以较低的成本达到这些性能指标,将开发一种新型的导电填料。在这些材料开发工作的同时,将设计、模拟和打印新的射频组件,以便建立一个全面的数据库,其中包含详细的设计和打印参数,用于生产低故障率的射频组件。到本项目结束时,用户将能够在低成本的3D打印机上设计、预测和可靠地打印具有导电丝的射频组件。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
3D printing electronic components and circuits with conductive thermoplastic filament
  • DOI:
    10.1016/j.addma.2017.10.002
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Flowers, Patrick F.;Reyes, Christopher;Wiley, Benjamin J.
  • 通讯作者:
    Wiley, Benjamin J.
Computational microwave imaging using 3D printed conductive polymer frequency-diverse metasurface antennas
  • DOI:
    10.1049/iet-map.2017.0104
  • 发表时间:
    2017-04
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    O. Yurduseven;P. Flowers;Shengrong Ye;D. Marks;J. Gollub;T. Fromenteze;B. Wiley;David R. Smith
  • 通讯作者:
    O. Yurduseven;P. Flowers;Shengrong Ye;D. Marks;J. Gollub;T. Fromenteze;B. Wiley;David R. Smith
Microwave metamaterials made by fused deposition 3D printing of a highly conductive copper-based filament
  • DOI:
    10.1063/1.4982718
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Yangbo Xie;Shengrong Ye;Christopher Reyes;P. Sithikong;B. Popa;B. Wiley;S. Cummer
  • 通讯作者:
    Yangbo Xie;Shengrong Ye;Christopher Reyes;P. Sithikong;B. Popa;B. Wiley;S. Cummer
Integrated Flexible Conversion Circuit between a Flexible Photovoltaic and Supercapacitors for Powering Wearable Sensors
  • DOI:
    10.1149/2.0141808jes
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    James O. Thostenson;Zhongxi Li;C. H. Kim;A. Ajnsztajn;C. Parker;Jie Liu;A. Peterchev;J. Glass;S. Goetz
  • 通讯作者:
    James O. Thostenson;Zhongxi Li;C. H. Kim;A. Ajnsztajn;C. Parker;Jie Liu;A. Peterchev;J. Glass;S. Goetz
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shengrong Ye其他文献

How Copper Nanowires Grow and How To Control Their Properties
  • DOI:
    10.1021/acs.accounts.5b00506
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
  • 作者:
    Shengrong Ye;Ian E. Stewart;Zuofeng Chen;Bo Li;Aaron R. Rathmell;Benjamin J. Wiley
  • 通讯作者:
    Benjamin J. Wiley
Morphology control of SBA-15 in chiral organic acid media
SBA-15 在手性有机酸介质中的形态控制
D printing electronic components and circuits with conductive hermoplastic filament
使用导电热塑性长丝 D 打印电子元件和电路
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    atrick F. Flowers;Christopher Reyes;Shengrong Ye;M. Kim;B. Wiley
  • 通讯作者:
    B. Wiley

Shengrong Ye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark Supercooled Phase Transition
  • 批准号:
    24ZR1429700
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ATLAS实验探测器Phase 2升级
  • 批准号:
    11961141014
  • 批准年份:
    2019
  • 资助金额:
    3350 万元
  • 项目类别:
    国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
  • 批准号:
    41802035
  • 批准年份:
    2018
  • 资助金额:
    12.0 万元
  • 项目类别:
    青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
  • 批准号:
    61675216
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于Phase-type分布的多状态系统可靠性模型研究
  • 批准号:
    71501183
  • 批准年份:
    2015
  • 资助金额:
    17.4 万元
  • 项目类别:
    青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
  • 批准号:
    51201142
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
  • 批准号:
    11101428
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
  • 批准号:
    19374069
  • 批准年份:
    1993
  • 资助金额:
    6.4 万元
  • 项目类别:
    面上项目

相似海外基金

SBIR Phase I: Low-cost Domestic Additive Manufacturing for Silicon Solar Cells
SBIR第一期:硅太阳能电池的低成本国产增材制造
  • 批准号:
    2212740
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Ultra-stable, phase sensitive, snapshot OCT system enabled by 2-Photon additive manufacturing
通过 2 光子增材制造实现超稳定、相敏、快照 OCT 系统
  • 批准号:
    10607853
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
SBIR Phase I: Additive Manufacturing for Soft Tissue Repair by Three-Dimensional Microfiber Fabrication (3DMF)
SBIR 第一阶段:通过三维微纤维制造 (3DMF) 进行软组织修复的增材制造
  • 批准号:
    2208745
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SBIR Phase I: Machine learning-powered simulation of additive manufacturing for real-time design and process optimization
SBIR 第一阶段:基于机器学习的增材制造仿真,用于实时设计和流程优化
  • 批准号:
    2151667
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Additive manufacturing with liquid / phase change materials
使用液体/相变材料进行增材制造
  • 批准号:
    573131-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    University Undergraduate Student Research Awards
Dynamics and guiding principles of chemical liquid-phase sintering for binder jetting additive manufacturing of aluminum
铝粘合剂喷射增材制造化学液相烧结的动力学和指导原则
  • 批准号:
    22H00186
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of accurate prediction method for solidification microstructure in additive manufacturing by high-performance phase-field simulation
高性能相场模拟开发增材制造凝固组织精确预测方法
  • 批准号:
    21K14041
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Additive manufacturing of indoor power generating devices (Phase I)
室内发电装置增材制造(一期)
  • 批准号:
    561742-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Idea to Innovation
SBIR Phase II: Automation of a Novel Low Cost Aluminum Additive Manufacturing Method
SBIR 第二阶段:新型低成本铝增材制造方法的自动化
  • 批准号:
    2127355
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Cooperative Agreement
SBIR Phase I: Novel Extrusion System for Additive Manufacturing of Engineered Lattice Structures
SBIR 第一阶段:用于工程晶格结构增材制造的新型挤出系统
  • 批准号:
    2111712
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了