SCH: EAGER: RUI: Collaborative Research: A novel 3D image predictive model for osteoarthritis disease
SCH:EAGER:RUI:协作研究:骨关节炎疾病的新型 3D 图像预测模型
基本信息
- 批准号:1723420
- 负责人:
- 金额:$ 20.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Knee osteoarthritis (OA) affects 10% of older adults and is a major cause of work absence, early retirement and joint replacement. Knee OA is a disease characterized by deterioration of the cartilage in the knee. Using current technology, it is hard to predict how fast or how much deterioration will take place because cartilage loss is a slow and gradual process and can only be detected through medical images. This project will explore a novel 3D image model that can predict the accurate change of knee cartilage, to facilitate early detection and personal treatment for OA. If successful, the project could benefit 35 million people in the United States by reducing the high economic cost related to OA treatment, and improving the quality of life for these people. The PIs plan to disseminate the research to local medical communities and design a new course to involve undergraduate students into the research. The novel 3D image predictive model should have a wide variety of imaging applications. The goal of this project is to explore a novel 3D-information-fusion mechanism for medical imaging and a novel 3D image-to-image predictive model using deep neural networks as the core. The project will integrate cartilage information from MRI sequences. To handle size differences and perform image registration, a universal coordinate system will be defined to form a continuous and complete representation of the cartilage plane. Using the coordinate system, deep neural networks will be trained to learn the underlying correlation between the 3D cartilage maps. Unlike the traditional image-to-single-value prediction, the model will make image-to-image prediction; that is, from a current 3D cartilage map to a future 3D cartilage map, for different lengths of time (2, 4, 6, and 8 years respectively), leveraging a large imaging database. Finally, the team will construct the future 3D knee models from the cartilage maps to display the trajectory of cartilage change in a 3D view.
膝关节骨关节炎(OA)影响10%的老年人,是导致缺勤、提前退休和关节置换的主要原因。膝关节OA是一种以膝关节软骨退化为特征的疾病。使用目前的技术,很难预测恶化的速度或程度,因为软骨损失是一个缓慢而渐进的过程,只能通过医学图像来检测。本研究将探索一种新的三维图像模型,可以准确预测膝关节软骨的变化,以促进OA的早期发现和个性化治疗。如果成功,该项目可以通过降低与OA治疗相关的高昂经济成本并改善这些人的生活质量,使美国3500万人受益。PI计划将研究传播到当地医学界,并设计一个新的课程,让本科生参与研究。新的3D图像预测模型应该具有各种各样的成像应用。该项目的目标是探索一种新型的医学成像3D信息融合机制,以及一种以深度神经网络为核心的新型3D图像到图像预测模型。该项目将整合来自MRI序列的软骨信息。为了处理尺寸差异并执行图像配准,将定义通用坐标系以形成软骨平面的连续且完整的表示。使用坐标系,将训练深度神经网络来学习3D软骨图之间的潜在相关性。与传统的图像到单值预测不同,该模型将进行图像到图像预测;即,从当前的3D软骨图到未来的3D软骨图,持续不同的时间长度(分别为2年,4年,6年和8年),利用大型成像数据库。最后,该团队将根据软骨图构建未来的3D膝关节模型,以3D视图显示软骨变化的轨迹。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Knee osteoarthritis severity level classification using whole knee cartilage damage Index and ANN
使用全膝软骨损伤指数和人工神经网络对膝骨关节炎严重程度进行分类
- DOI:10.1145/3278576.3278585
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Du, Yaodong;Shan, Juan;Almajalid, Rania;Zhang, Ming
- 通讯作者:Zhang, Ming
FINGER JOINT SEGMENTATION USING MACHINE LEARNING AND MINIMIZED TRAINING SET
使用机器学习和最小化训练集进行手指关节分割
- DOI:10.1016/j.joca.2022.02.118
- 发表时间:2022
- 期刊:
- 影响因子:7
- 作者:Wang, Y.;Zhang, M.;Cheung, T.;Guida, C.;Ren, R.;Shan, J.
- 通讯作者:Shan, J.
Automated Hand Osteoarthritis Classification Using Convolutional Neural Networks
使用卷积神经网络自动手部骨关节炎分类
- DOI:10.1109/icmla52953.2021.00240
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Guida, Carmine;Zhang, Ming;Blackadar, Jordan;Yang, Zilong;Driban, Jeffrey B.;Duryea, Jeffrey;Schaefer, Lena;Eaton, Charles B.;McAlindon, Timothy;Shan, Juan
- 通讯作者:Shan, Juan
Automatic Hand Segmentation from Hand X-rays Using Minimized Training Samples and Machine Learning Models
使用最小化训练样本和机器学习模型根据手部 X 射线自动分割手部
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Yang, Z.;Shan, J.;Guida, C.;Blackadar, J.;Cheung, T;Driban, J;McAlindon, T;Zhang, M
- 通讯作者:Zhang, M
Bone Marrow Lesion Segmentation Using Synthetic Data and Deep Learning Models
使用合成数据和深度学习模型进行骨髓病变分割
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Michaely B.;Zhang M.;Shan, J.
- 通讯作者:Shan, J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Shan其他文献
Do CD4<sup>+</sup>Foxp3<sup>+</sup> Treg cells correlate with transplant outcomes: A systematic review on recipients of solid organ transplantation
- DOI:
10.1016/j.cellimm.2011.05.006 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:
- 作者:
Juan Shan;Yinjia Guo;Lei Luo;Jun Lu;Chengwen Li;Chuntao Zhang;Yuchuan Huang;Li Feng;Wenqiao Wu;Dan Long;Shengfu Li;Youping Li - 通讯作者:
Youping Li
A modified splint tubing technique for heterotopic heart transplantation in mouse
- DOI:
10.1016/j.trim.2011.03.005 - 发表时间:
2011-07-01 - 期刊:
- 影响因子:
- 作者:
Chengwen Li;Lei Luo;Jun Lu;Li Feng;Juan Shan;Dan Long;Yingjia Guo;Wenqiao Wu;Shengfu Li;Youping Li - 通讯作者:
Youping Li
Semi-supervised heterogeneous graph contrastive learning with label-guided
- DOI:
10.1007/s10489-024-05703-8 - 发表时间:
2024-08-03 - 期刊:
- 影响因子:3.500
- 作者:
Chao Li;Guoyi Sun;Xin Li;Juan Shan - 通讯作者:
Juan Shan
Peripheral blood T Regulatory cell counts may not predict transplant rejection
- DOI:
10.1186/1471-2172-11-40 - 发表时间:
2010-07-15 - 期刊:
- 影响因子:2.700
- 作者:
Yuchuan Huang;Juan Shan;Chuntao Zhang;Jie Zhang;Li Feng;Shengfu Li;Youping Li - 通讯作者:
Youping Li
152 Prediction Models for Accelerated Knee Osteoarthritis Study
- DOI:
10.1016/j.joca.2024.02.163 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:
- 作者:
Ming Zhang;Danti Yang;Samantha Kuang;Jeffrey Driban;Timothy McAlindon;Juan Shan - 通讯作者:
Juan Shan
Juan Shan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
EAGER: RUI: Elucidating the role of exosomes in the regulation of steroidogenesis
EAGER:RUI:阐明外泌体在类固醇生成调节中的作用
- 批准号:
2221192 - 财政年份:2022
- 资助金额:
$ 20.81万 - 项目类别:
Standard Grant
EAGER: RUI: How Do Multigenerational Households Provide Care, Manage Risk and Negotiate Infectious Disease Safety during the Pandemic?
EAGER:RUI:多代家庭如何在大流行期间提供护理、管理风险并协商传染病安全?
- 批准号:
2139362 - 财政年份:2021
- 资助金额:
$ 20.81万 - 项目类别:
Standard Grant
EAGER: RUI: The Physiology and Nitrogen Assimilatory Pathway of Spanish Moss (Tillandsia Usneoides) in Pesponse to Increased Nitrogen
EAGER:RUI:西班牙苔藓(Tillandsia Usneoides)对增加氮的响应的生理学和氮同化途径
- 批准号:
2040121 - 财政年份:2021
- 资助金额:
$ 20.81万 - 项目类别:
Standard Grant
EAGER: III: Collaborative Research: RUI: In silico Algorithm for Assessing the Effects of Amino Acid Insertion and Deletion Mutations
EAGER:III:合作研究:RUI:用于评估氨基酸插入和缺失突变影响的计算机算法
- 批准号:
2031283 - 财政年份:2020
- 资助金额:
$ 20.81万 - 项目类别:
Standard Grant
EAGER: RUI: Elucidation of the AlCl4- and Al2Cl7- ions speciation, interactions and transport in electrolytes comprised of RTILs by Multi-Nuclear NMR techniques.
EAGER:RUI:通过多核 NMR 技术阐明由 RTIL 组成的电解质中 AlCl4- 和 Al2Cl7- 离子的形态、相互作用和传输。
- 批准号:
1841398 - 财政年份:2018
- 资助金额:
$ 20.81万 - 项目类别:
Continuing Grant
SCH: EAGER: RUI: Collaborative Research: A novel 3D image predictive model for osteoarthritis disease
SCH:EAGER:RUI:协作研究:骨关节炎疾病的新型 3D 图像预测模型
- 批准号:
1723429 - 财政年份:2017
- 资助金额:
$ 20.81万 - 项目类别:
Standard Grant
EAGER/RUI: One-Step, Programed Alignment of Liquid Crystal Elastomers by Guest Host Interactions
EAGER/RUI:通过客主交互对液晶弹性体进行一步式、程序化排列
- 批准号:
1649403 - 财政年份:2016
- 资助金额:
$ 20.81万 - 项目类别:
Standard Grant
EAGER: RUI: Functional Characterization of Micro RNAs and their Role in the Cellular Stress Response of Polar Fish
EAGER:RUI:微小 RNA 的功能表征及其在极地鱼细胞应激反应中的作用
- 批准号:
1522865 - 财政年份:2015
- 资助金额:
$ 20.81万 - 项目类别:
Standard Grant
EAGER/RUI: Vertically Aligned Bulk Heterojunctions by Combining Screen Printing and Lyotropic Liquid Crystal Processing
EAGER/RUI:结合丝网印刷和溶致液晶加工的垂直排列体异质结
- 批准号:
1345138 - 财政年份:2013
- 资助金额:
$ 20.81万 - 项目类别:
Standard Grant
EAGER: RUI: The genomic architecture of speciation in an avian hybrid zone
EAGER:RUI:鸟类杂交区物种形成的基因组结构
- 批准号:
1244739 - 财政年份:2012
- 资助金额:
$ 20.81万 - 项目类别:
Standard Grant