EAGER: Turbulent Ventricular Cerebrospinal Fluid Flow Dynamics in Physiological and Pathological Conditions
EAGER:生理和病理条件下的湍流心室脑脊液流动动力学
基本信息
- 批准号:1723550
- 负责人:
- 金额:$ 20.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational models are being applied at increasing rate toward better understanding and assessment of deleterious human physiological effects. This project is a simulation study of the turbulent flow of cerebrospinal fluid. Cerebrospinal fluid is believed to circulate in the central nervous system, protecting the brain from trauma by providing buoyancy. Abnormalities in cerebrospinal fluid, its containment space, and its circulations have been related to diseases. The biomechanics of the turbulent mixing of the cerebrospinal fluid flow in the ventricular space is of paramount importance. The potential transformative impacts the cerebrospinal bio-turbulence physics has on improving the medical diagnosis and treatment of neurological disorders of the brain are significant. The objectives of this project include gaining a thorough understanding of the roles the physics of turbulent cerebrospinal fluid flow dynamics play in the pathologies of central nervous system disorders. A successful completion of the broader objectives produces a clinically validated computation framework for turbulent cerebrospinal fluid flow. An advanced understanding of the physics of the cerebrospinal fluid flow will improve the efficacy of cerebrospinal fluid-related medical diagnosis and treatments, and the well-being of individuals in society.Cerebrospinal fluid flow is believed to present throughout the lateral, the third and the fourth ventricles before entering the subarachnoid space, which surrounds the brain, the spinal cord, and other important systems, such as the optic nerve system. In this proposed project, the PIs focus on capturing and quantifying the dynamics of the observed turbulent cerebrospinal fluid flow in the third and the fourth ventricles. Cerebrospinal fluid will be represented by an incompressible Newtonian fluid with the same density and viscosity as those of water at the normal body core temperature. The cerebrospinal fluid flow will be resolved using a modern lattice Boltzmann method. An immersed boundary method will be applied to properly account for the non-lattice conforming shape of the complex cerebrospinal fluid flow passages. An intracranial vascular flow model will be developed for the cerebrovascular flow dynamics. The outcomes of the subject-specific simulations will be compared with those based on Magnetic Resonance Imaging data. Subject-specific applications of the computational model in a healthy and a diseased condition will be conducted.
计算模型正以越来越快的速度应用于更好地理解和评估有害的人体生理影响。本计画是一项脑脊髓液紊流的模拟研究。脑脊液被认为在中枢神经系统中循环,通过提供浮力来保护大脑免受创伤。脑脊髓液中的脑脊液、其容纳空间和其循环与疾病有关。脑室内脑脊液流动的湍流混合的生物力学是至关重要的。脑脊髓生物湍流物理学对改善脑神经系统疾病的医学诊断和治疗具有潜在的变革性影响。该项目的目标包括深入了解湍流脑脊液流动动力学在中枢神经系统疾病病理学中的作用。一个更广泛的目标的成功完成产生了一个临床验证的计算框架湍流脑脊液流动。对脑脊液流动物理学的深入了解将提高脑脊液相关医疗诊断和治疗的效率,以及社会中个人的福祉。脑脊液流动被认为在进入蛛网膜下腔之前存在于整个侧脑室,第三和第四脑室,蛛网膜下腔包围着大脑,脊髓和其他重要系统,例如视神经系统。在这个拟议的项目中,PI专注于捕获和量化在第三和第四脑室中观察到的湍流脑脊液流的动力学。脑脊液将由不可压缩的牛顿流体表示,其密度和粘度与正常体核温度下的水相同。将使用现代格子玻尔兹曼方法解决脑脊液流动。浸没边界法将被应用到适当的非晶格符合形状的复杂的脑脊液流动通道。建立了一个脑血管血流动力学模型。将受试者特定模拟的结果与基于磁共振成像数据的结果进行比较。将进行计算模型在健康和患病条件下的受试者特定应用。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cerebrospinal Fluid Flow Simulations during Head Nodding Motions
点头运动期间的脑脊液流动模拟
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:William W. Liou, Jin Xu
- 通讯作者:William W. Liou, Jin Xu
CEREBROSPINAL FLUID FLOW SIMULATIONS IN BRAIN VENTRICLES WITH ELASTIC WALL RESPONSES
具有弹性壁反应的脑室脑脊液流动模拟
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Liou, William W;Yang, Yang;Yamada, Shinya
- 通讯作者:Yamada, Shinya
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Liou其他文献
William Liou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Liou', 18)}}的其他基金
Explore Impacts of Head Motion on Cerebrospinal Fluid Dynamics using Simulation and Real-Time Medical Imaging
使用仿真和实时医学成像探索头部运动对脑脊液动力学的影响
- 批准号:
2232598 - 财政年份:2022
- 资助金额:
$ 20.38万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
- 批准号:
2331729 - 财政年份:2024
- 资助金额:
$ 20.38万 - 项目类别:
Continuing Grant
Exploration of the Nonequilibrium Statistical Mechanics of Turbulent Collisionless Plasmas
湍流无碰撞等离子体的非平衡统计力学探索
- 批准号:
2409316 - 财政年份:2024
- 资助金额:
$ 20.38万 - 项目类别:
Continuing Grant
EAGER: Liutex-based Sub-Grid Model for Large Eddy Simulation of Turbulent Flow
EAGER:基于 Liutex 的湍流大涡模拟子网格模型
- 批准号:
2422573 - 财政年份:2024
- 资助金额:
$ 20.38万 - 项目类别:
Standard Grant
Mesh-free methods for turbulent reacting flows: the next generation of DNS
用于湍流反应流的无网格方法:下一代 DNS
- 批准号:
EP/W005247/2 - 财政年份:2024
- 资助金额:
$ 20.38万 - 项目类别:
Research Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
- 批准号:
2331728 - 财政年份:2024
- 资助金额:
$ 20.38万 - 项目类别:
Continuing Grant
ERI: Experimental Investigation of Compressibility Effects on Turbulent Kinetic Energy Production in Supersonic Flows
ERI:压缩性对超音速流中湍动能产生的影响的实验研究
- 批准号:
2347416 - 财政年份:2024
- 资助金额:
$ 20.38万 - 项目类别:
Standard Grant
Impact of roughness on adverse pressure gradient turbulent boundary layers
粗糙度对逆压梯度湍流边界层的影响
- 批准号:
DP240103015 - 财政年份:2024
- 资助金额:
$ 20.38万 - 项目类别:
Discovery Projects
Advancement and application of footprint analysis in urban atmospheric turbulent dispersion fields
足迹分析在城市大气湍流弥散场中的进展及应用
- 批准号:
23H01563 - 财政年份:2023
- 资助金额:
$ 20.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
TENSOR: Turbulent boundary layer and trailing Edge Noise Study Of flow past a porous surface at high Reynolds number
张量:高雷诺数下流过多孔表面的湍流边界层和后缘噪声研究
- 批准号:
EP/X032590/1 - 财政年份:2023
- 资助金额:
$ 20.38万 - 项目类别:
Fellowship
Fundamental understanding of turbulent flow over fluid-saturated complex porous media
对流体饱和复杂多孔介质上湍流的基本理解
- 批准号:
EP/W03350X/1 - 财政年份:2023
- 资助金额:
$ 20.38万 - 项目类别:
Research Grant