EAGER: Controlling Microstructure for Strong and Damage Tolerant Nanocrystalline Metals
EAGER:控制坚固且耐损伤的纳米晶金属的微观结构
基本信息
- 批准号:1724519
- 负责人:
- 金额:$ 29.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nanocrystalline metals and alloys (polycrystals with grain sizes less than ~100 nm) offer a suite of appealing mechanical properties for structural applications, including high strength and hardness, enhanced fatigue resistance, and tribological robustness. These virtues derive from the large fraction of material that resides at the interfaces between neighboring crystals, known as grain boundaries. For these materials, this high fraction of interfacial volume can cause deleterious effects such as thermal instability and relatively poor damage tolerance. Many present and future applications of nanocrystalline metals such as robust coatings, electrical interconnects, micro- and nano-electro-mechanical systems, and soft magnets subject these materials to extreme mechanical duress, which can activate microstructural transformation and alter the beneficial materials properties. This EArly-concept Grant for Exploratory Research (EAGER) award supports research centered on the concept that control of grain boundary chemistry in nanocrystalline alloys can be used to tailor the thermal and mechanical stability of nanocrystalline materials against grain boundary migration in extreme service environments. Control over this behavior can allow for unprecedented control of damage tolerance, thus enabling a novel and inexpensive structural materials design strategy.In this research program, the investigators aim to control grain boundary chemistry in nanocrystalline alloys as a means to encode the onset of thermally- and mechanically-driven grain boundary migration under service conditions. In cases where extreme mechanical environments are encountered (e.g. at stress concentrations such as crack tips), stress-driven grain boundary migration can be triggered to respond to damage, endowing the material with damage tolerance. This dynamic material response is predicated on local stress triggers that drive microstructure transition and dissipate energy to mitigate catastrophic failure, allowing for both strength and toughness. The research will be accomplished via the following scientific and technical goals: (a) identify and characterize the mechanisms that lead to mechanically-induced grain boundary migration and grain growth, (b) identify and characterize the manner in which these mechanisms are influenced by grain boundary chemistry, (c) identify elements that will segregate to grain boundary and modulate thermal and stress-driven grain boundary migration, (d) synthesize nanocrystalline alloys with tailored grain boundary chemistry, and (e) perform material characterization and quantitative in situ mechanical testing.
纳米晶体金属和合金(晶粒尺寸小于~100 nm的多晶体)为结构应用提供了一系列吸引人的机械性能,包括高强度和硬度、增强的抗疲劳性和摩擦学鲁棒性。这些优点来自于大部分材料存在于相邻晶体之间的界面处,称为晶界。对于这些材料,这种高比例的界面体积可能会导致有害的影响,如热不稳定性和相对较差的损伤容限。 纳米晶金属目前和未来的许多应用,如坚固的涂层,电互连,微和纳米机电系统,和软磁体,使这些材料受到极端的机械胁迫,这可以激活微观结构转变并改变有益的材料特性。EARLY概念探索性研究资助(EAGER)奖支持以纳米晶合金中晶界化学的控制可用于定制纳米晶材料在极端服务环境中抵抗晶界迁移的热稳定性和机械稳定性为中心的研究。控制这种行为可以允许前所未有的控制损伤容限,从而使一种新颖的和廉价的结构材料的设计strategy.In这项研究计划中,研究人员的目标是控制纳米晶合金的晶界化学作为一种手段来编码的热和机械驱动的晶界迁移在服务条件下的开始。在遇到极端机械环境的情况下(例如,在应力集中处,如裂纹尖端),可以触发应力驱动的晶界迁移以响应损伤,从而赋予材料损伤容限。这种动态材料响应基于局部应力触发,该局部应力触发驱动微观结构转变并耗散能量以减轻灾难性失效,从而实现强度和韧性。该研究将通过以下科学和技术目标来完成:(a)识别和表征导致机械诱导的晶界迁移和晶粒生长的机制,(B)识别和表征这些机制受晶界化学影响的方式,(c)识别将偏析到晶界并调节热和应力驱动的晶界迁移的元素,(d)合成具有定制晶界化学的纳米晶合金,以及(e)进行材料表征和定量原位机械测试。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Origins of strengthening and failure in twinned Au nanowires: Insights from in−situ experiments and atomistic simulations
- DOI:10.1016/j.actamat.2020.01.038
- 发表时间:2020-01
- 期刊:
- 影响因子:9.4
- 作者:Zhuocheng Xie;Jungho Shin;Jakob Renner;A. Prakash;D. Gianola;E. Bitzek
- 通讯作者:Zhuocheng Xie;Jungho Shin;Jakob Renner;A. Prakash;D. Gianola;E. Bitzek
Femtosecond laser rejuvenation of nanocrystalline metals
- DOI:10.1016/j.actamat.2018.06.027
- 发表时间:2018-09
- 期刊:
- 影响因子:9.4
- 作者:G. Balbus;M. Echlin;Charlette M. Grigorian;T. Rupert;T. Pollock;D. Gianola
- 通讯作者:G. Balbus;M. Echlin;Charlette M. Grigorian;T. Rupert;T. Pollock;D. Gianola
Strong, Ultralight Nanofoams with Extreme Recovery and Dissipation by Manipulation of Internal Adhesive Contacts
- DOI:10.1021/acsnano.0c02422
- 发表时间:2020-07-28
- 期刊:
- 影响因子:17.1
- 作者:Park, Sei Jin;Shin, Jungho;Hart, A. John
- 通讯作者:Hart, A. John
Rejuvenation of Disorder-Containing Materials
含无序材料的复兴
- DOI:10.1007/978-3-319-91989-8_85
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Balbus, G.H.;Echlin, M.P.;Grigorian, C.M.;Rupert, T.J.;Pollock, T.M.;Gianola, D.S.
- 通讯作者:Gianola, D.S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Gianola其他文献
Analysis of Discrete Variables in Animal Breeding Contexts
- DOI:
10.3168/jds.s0022-0302(79)83449-9 - 发表时间:
1979-09-01 - 期刊:
- 影响因子:
- 作者:
Daniel Gianola - 通讯作者:
Daniel Gianola
Erratum to: Contribution of an additive locus to genetic variance when inheritance is multi-factorial with implications on interpretation of GWAS
- DOI:
10.1007/s00122-013-2101-1 - 发表时间:
2013-05-05 - 期刊:
- 影响因子:4.200
- 作者:
Daniel Gianola;Frederic Hospital;Etienne Verrier - 通讯作者:
Etienne Verrier
Predicting genetic predisposition in humans: the promise of whole-genome markers
预测人类的遗传易感性:全基因组标记的前景
- DOI:
10.1038/nrg2898 - 发表时间:
2010-11-03 - 期刊:
- 影响因子:52.000
- 作者:
Gustavo de los Campos;Daniel Gianola;David B. Allison - 通讯作者:
David B. Allison
Genetic Analysis of Fertility in Dairy Cattle Using Negative Binomial Mixed Models
- DOI:
10.3168/jds.s0022-0302(99)75415-9 - 发表时间:
1999-08-01 - 期刊:
- 影响因子:
- 作者:
Robert J. Tempelman;Daniel Gianola - 通讯作者:
Daniel Gianola
Daniel Gianola的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Gianola', 18)}}的其他基金
MRI: Development of an ultrafast, ultrasensitive, and high resolution direct electron detector for next-generation electron back-scattered diffraction of metallic and beam-sensitiv
MRI:开发超快、超灵敏、高分辨率直接电子探测器,用于金属和光束敏感的下一代电子背散射衍射
- 批准号:
2117843 - 财政年份:2021
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
CAREER: Mechanics of Ultra-Strength Nanomaterials: Revealing Deformation Mechanisms
职业:超强纳米材料力学:揭示变形机制
- 批准号:
1056293 - 财政年份:2011
- 资助金额:
$ 29.9万 - 项目类别:
Continuing Grant
Materials World Network: Collaborative Research: Quantifying the Role of Impurities that Control Stress-Driven Grain Growth in Nanocrystalline Metals
材料世界网络:合作研究:量化控制纳米晶金属中应力驱动晶粒生长的杂质的作用
- 批准号:
1008222 - 财政年份:2011
- 资助金额:
$ 29.9万 - 项目类别:
Continuing Grant
Bayesian methods for structural equation models in quantitative genetics with applications to the study of mammary gland disease
定量遗传学结构方程模型的贝叶斯方法及其在乳腺疾病研究中的应用
- 批准号:
0443771 - 财政年份:2005
- 资助金额:
$ 29.9万 - 项目类别:
Continuing Grant
Quantitative Genetic Analysis of Longitudinal Data Using Robust Bayesian Methods
使用稳健贝叶斯方法对纵向数据进行定量遗传分析
- 批准号:
0089742 - 财政年份:2001
- 资助金额:
$ 29.9万 - 项目类别:
Continuing Grant
相似海外基金
Controlling the delivery of actives by tuning the microstructure of personal care products
通过调整个人护理产品的微观结构来控制活性物质的输送
- 批准号:
2748972 - 财政年份:2022
- 资助金额:
$ 29.9万 - 项目类别:
Studentship
The Fundamentals of Formulation Science: Controlling the microstructure of lamellar polycrystalline formulations under dynamic consumerrelevant proces
配方科学基础知识:在动态消费者相关过程下控制层状多晶配方的微观结构
- 批准号:
2824844 - 财政年份:2022
- 资助金额:
$ 29.9万 - 项目类别:
Studentship
Development of high-capacity cathodes for rechargeable batteries by controlling microstructure of oxides
通过控制氧化物微观结构开发可充电电池的高容量正极
- 批准号:
21H01646 - 财政年份:2021
- 资助金额:
$ 29.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Controlling the Microstructure for Improved Mechanical Properties of Large-scale Polymer Composite Structures Made by Big Area Additive Manufacturing
合作研究:控制微观结构以改善大面积增材制造制成的大型聚合物复合结构的机械性能
- 批准号:
2055529 - 财政年份:2021
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
Collaborative Research: Controlling the Microstructure for Improved Mechanical Properties of Large-scale Polymer Composite Structures Made by Big Area Additive Manufacturing
合作研究:控制微观结构以改善大面积增材制造制成的大型聚合物复合结构的机械性能
- 批准号:
2055628 - 财政年份:2021
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
Controlling Microstructure of Metal and Polymer Aerogels via Advanced Templating Approaches
通过先进的模板方法控制金属和聚合物气凝胶的微观结构
- 批准号:
2439091 - 财政年份:2020
- 资助金额:
$ 29.9万 - 项目类别:
Studentship
Development of high-capacity cathodes for rechargeable batteries by controlling microstructure of oxides
通过控制氧化物微观结构开发可充电电池的高容量正极
- 批准号:
19K15307 - 财政年份:2019
- 资助金额:
$ 29.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of Stainless Steels Immune to Stress Corrosion Cracking by Controlling Grain Boundary Microstructure Using Welding Simulation Heat Treatment
通过焊接模拟热处理控制晶界微观结构开发抗应力腐蚀裂纹的不锈钢
- 批准号:
19H02472 - 财政年份:2019
- 资助金额:
$ 29.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Friction and wear reduction of hydrogels by controlling hydration structure and surface microstructure
通过控制水化结构和表面微观结构减少水凝胶的摩擦和磨损
- 批准号:
18K03911 - 财政年份:2018
- 资助金额:
$ 29.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Physical Mechanism of superheated Steam Generation by Controlling Microstructure of Porous Surface
控制多孔表面微观结构产生过热蒸汽的物理机制
- 批准号:
18K03944 - 财政年份:2018
- 资助金额:
$ 29.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)